
1

Spring Semester 2025 EE209 Midterm Exam

Pledging of No Cheating

Note: Please write down your student ID and name, sign on it (draw your signature), and

date it. If you do not fill out this page, we won’t grade your mid-term exam.

저는이번시험을치르면서이과목에서금지한어떤부정행위도저지르지않을것임을

서약합니다.추후에위반사항이발견되었을경우합당한모든불이익을감수하겠습니다.

I pledge that I will not participate in any activity of cheating disallowed by this course while

taking this exam online. I will assume full responsibility if any violation is found later.

Student ID: __________________________ Name: __________________________

Signature: __________________________ Date: __________________________

The exam is closed book and notes. Read the questions carefully and focus your answers

on what has been asked. You are allowed to ask the instructor/TAs for help only in

understanding the questions, in case you find them not completely clear. Be concise and

precise in your answers and state clearly any assumption you may have made. All your

answers must be included in the attached sheets. You have 150 minutes to complete your

exam. Be wise in managing your time.

Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

Total /104

8 /15

7 /13

6 /15

5 /15

4 /8

3 /8

2 /15

1 /15

2

1. (15 points) C fundamentals and data types

(a) (3 points) Consider the following three integers given in different ways of

representation in C:

a = 0b101101

b = 075

c = 0x3F

Write down a, b, c in decimal form.

[Solution]

a = 45, b = 61, c = 63

(b) (4 points) In an 8-bit two’s complement system, for the following numbers, convert

decimal ones into binary and binary ones into decimal representation:

a. -18

b. -128

c. 00110100

d. 10101010

[Solution] 11101110, 10000000, 52, -86

(c) (4 points) Write down the printing output of the following C code snippet:

#include<stdio.h>

intmain(){

unsignedcharch=–1;

printf("a=%d,b=%o,c=%x\n",ch,

ch,ch);

printf("sizeof(unsignedchar)=%zu

byte(s)",sizeof(unsignedchar));

return0;

}

[Solution]

a = 255, b = 377, c = ff,

3

sizeof(unsigned char) = 1 byte(s)

(d) (3 points) Consider the following C code snippet. Write down the exact output that

the program would print when executed. Assume all variables are 8-bit signed integers

and that all operations are performed using 8-bit signed arithmetic.

Hint: Operators follow the precedence rule in the following order: additive(higher) >

bitwise > logical(lower)

[Solution] x, y, z = 1, -5, 1

(e) (1 point) Write down the printing output of the following C code snippet.

[Solution] d=3

#include<stdio.h>
intmain(){

inta=3,b=5;
intx=(a<b)&&(b<<1)+1;
inty=((x+2)&b)^(~b);
intz=x|b&&y;
printf("x,y,z=%d,%d,%d\n",x,

y,z);
return0;

}

#include<stdio.h>
intmain(){

inta=2,b=4,c=5;
intd=a++*--b+++c-a*b--;
printf("d=%d\n",d++);

return0;
}

4

2. (15 points) Functions

(a) (6 points) Fill in the blank. Complete ReverseOfString function that reverses a

string using recursion. The function should modify the string in-place and does not

return any value. It takes three arguments: the string, the index of leftmost character, and

the index of rightmost chracter. For example, given the string EE209, calling

ReverseOfString(EE209,0,4) should result in the reversed string 902EE.

[Criteria]

(a) (2p) str

(b) (4p) left + 1

(c) (4p) right -1

#include<string.h>

#include<stdlib.h>

voidReverseOfString(char*str,intleft,intright){

if(left>=right)

return;

chartemp=str[left];

str[left]=str[right];

str[right]=temp;

ReverseOfString((a),(b),(c));

}

5

(b) (9 points) Fill in the blank. A symmetrical binary number is an integer whose binary

representation reads the same backward as forward. Complete IsBinarySymmetrical

function that returns 1 if the given integer is symmetrical in its binary form and 0

otherwise. For example, 5 is a symmetrical binary number, because its binary

representation is 101. In contrast, 6 is not symmetrical because its binary representation,

110, is not the same when reversed. Assume that x > 0.

#include<stdio.h>

intIsBinarySymmetrical(intx){

intnumBits=0;

inttemp=x;

while(temp>0){

numBits++;

temp=__(a)__;

}

for(inti=0;i<numBits/2;i++){

intleftBit =__(b)___;

intrightBit=__(c)___;

if(leftBit!=rightBit)

return0;

}

return1;

}

[Criteria]

(a) (3p) temp / 2

(b) (3p) (x >> i) & 1

(c) (3p) (x >> numBits - 1 – i) & 1

6

3. (8 points) Consider the following code written in C. Assume a 64-bit Linux system

(x86-64). For each of the 8 printfstatements (commented Line 1 to Line 8), write down

the value, character, or string that is printed. (+1 point for each correct answer, 8 points

maximum)

#include<stdio.h>

intmain(void){

charstr[]="KAISTEE209";
char*p=str;
char*q=p+6;
char**r=&p;

printf("%c\n",*(p+3)); //Line1
printf("%c\n",q[-2]); //Line2
printf("%c\n",**r); //Line3
printf("%zu\n",sizeof(str));//Line4

*p='k';
p+=2;
p[3]='S';

printf("%s\n",str); //Line5

char*u=str;
u++;

printf("%c\n",*(++u)); //Line6
printf("%c\n",(*(--u))++); //Line7
printf("%s\n",--u); //Line8

return0;
}

[Criteria] (+1 point for each correct answer)

Line 1: S

Line 2: T

Line 3: K

Line 4: 12

Line 5: kAISTSEE209

Line 6: I

Line 7: A

Line 8: kBISTSEE209

7

4. (8 points) Consider the following code written in C. For each of the 4 printf statements

(commented strcmp problem 1 to 4), answer whether the resulting number is positive,

negative, or zero. (+2 points for each correct answer, -1 point for each wrong answer)

#include<stdio.h>

#include<string.h>

#include<ctype.h>

char*mystery_function(char*s,intmagical_number){

for(inti=0;s[i]!='\0';i++){

//checkwhetherthecharacterisanalphabet

if(isalpha(s[i])){

//checkwhetherthecharacterisalowercaseor

uppercaseletter

if(islower(s[i]))

s[i]=((s[i]-'a'+magical_number)%26)+'a';

elseif(isupper(s[i]))

s[i]=((s[i]-'A'+magical_number)%26)+'A';

}

}

returns;

}

intmain(void){

charstr1[]="one";charstr2[]="bar";

charstr3[]="CAT";charstr4[]="PNG";

mystery_function(str1,13);

mystery_function(str4,13);

printf("%d\n",strcmp(str1,str2));//strcmpproblem1

printf("%d\n",strcmp(str2,str3));//strcmpproblem2

printf("%d\n",strcmp(str3,str4));//strcmpproblem3

printf("%d\n",strcmp(str4,str1));//strcmpproblem4

return0;

}

Answer:

Strcmp problem 1: 0 (zero)

Strcmp problem 2: + (positive)

Strcmp problem 3: 0 (zero)

Strcmp problem 4: - (negative)

8

5. (15 points) Structures and dynamic memory management

(a) (2 points) Fill in the Blanks

Fill in each blank with the correct term:

In C, the function (i)____________ allocates memory without initializing it, while the

function (ii)____________ allocates memory and sets all bytes to zero. In addition, a(an)

(iii)____________ is a user-defined type that groups variables of different types, whereas

a(an) (iv)____________ stores a collection of elements of the same type.

Answer:

(i) malloc

(ii) calloc

(iii) structure

(iv) array

(b) (3 points) Short Answer (Union vs. Structure)

Consider a structure and a union that both contain an int and a double. Explain the

difference in their memory allocation and state which one typically requires less memory.

Answer:

In a structure, separate memory is allocated for each member so its size is approximately

sizeof(int) + sizeof(double) (plus any padding). In a union, all members share the same

memory area, and its size is that of the largest member (typically sizeof(double)).

Therefore, the union requires less memory because it allocates only enough space for its

largest member.

9

(c) (4 points) – Bug Identification

Examine the following code snippet:

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

intmain(){

char*buffer=malloc(10);

if(buffer==NULL){

return1;

}

strcpy(buffer,“HelloWorld!”);

printf(“Buffer:%s\n”,buffer);

free(buffer);

printf(“Buffer:%s\n”,buffer);

return0;

}

Identify and briefly explain the two bugs in the code, and suggest corrections.

Answer:

1. Buffer Overflow: The string “HelloWorld!” needs 12 bytes (11 characters plus the

null terminator) but only 10 bytes are allocated.

Correction: Allocate memory using malloc(strlen(“HelloWorld!”) + 1).

2. Dangling Pointer Usage: After free(buffer), the pointer buffer is used in the

subsequent printf, which is undefined behavior because it becomes a dangling

pointer.

Correction: Do not access buffer after freeing it (or set buffer to NULL

immediately after free(buffer)).

(d) (6 points) Code Output with Complex Structure and Dynamic Memory

Examine the following code snippet and determine the output when main()is executed.

10

#include<stdio.h>

#include<stdlib.h>

typedefstruct{

char*data;intid;

}Record;

intmy_strlen(constchar*s){

inti=0;

while(s[i])

i++;

returni;

}

intmain(){

Record*r1=malloc(sizeof(Record)),*r2=malloc(sizeof(Record));

r1->data=malloc(6);r2->data=malloc(6);

charalpha[]="Alpha",beta[]="Beta";

for(inti=0;i<sizeof(alpha);i++)r1->data[i]=alpha[i];

for(inti=0;i<sizeof(beta);i++)r2->data[i]=beta[i];

r1->id=12;r2->id=34;

(r1->data+2)=(r2->data+1);

intlen=my_strlen(r2->data);

char*newData=malloc(len+2);

for(inti=0;i<len;i++)

newData[i]=r2->data[i];

newData[len]='0'+(r1->id%10);

newData[len+1]='\0';

free(r2->data);

r2->data=newData;

printf("%s(%d)%s(%d)\n",r1->data,r1->id,r2->data,r2->id);

free(r1->data);free(r2->data);free(r1);free(r2);

return0;

}

Note: In ASCII, the digits '0' through '9' are stored consecutively. The character '0' has an

integer value of 48. Thus, to convert an integer (0–9) to its corresponding character, you

add '0' to the integer.

Answer:

Aleha(12) Beta2(34)

11

6. (15 points) Linked Lists

We implement a singly linked list and two functions for modifying the list. Based on the

below structure and functions, answer the following questions. A function

insertNode(structNode**head,intvalue)inserts a new node at the head.

#include<stdlib.h>

structNode{

intvalue;

structNode*next;

};

voidmysteryA(structNode**head){

structNode*prev=NULL,*curr=*head,*next;

while(curr){

next=curr->next;

curr->next=prev;

prev=curr;

curr=next;

}

*head=prev;

}

voidmysteryB(structNode**head,inti,intj){

structNode*prev_i=NULL,*curr_i=*head;

structNode*prev_j=NULL,*curr_j=*head;

for(intpos=0;curr_i!=NULL&&pos<i;pos++){

prev_i=curr_i;

curr_i=curr_i->next;

}

for(intpos=0;curr_j!=NULL&&pos<j;pos++){

prev_j=curr_j;

curr_j=curr_j->next;

}

if(prev_i)prev_i->next=curr_j;

else*head=curr_j;

if(prev_j)prev_j->next=curr_i;

else*head=curr_i;

structNode*temp=curr_i->next;

curr_i->next=curr_j->next;

curr_j->next=temp;

}

12

(a) (4 points) Write the final sequence of node values (from head to tail) after this

operation on an empty list?

[Answer]

60, 50, 40, 30, 20, 10

(mysteryA: reverse entire list order)

[Criteria]

ﾡ No partial point

(b) (4 points) Write the final sequence of node values (from head to bottom) after this

operation on an empty list?

[Answer]

60, 10, 40, 30, 20, 50

(mysteryB: swap two node at indices i and j)

[Criteria]

ﾡ No partial point

structNode*list1=NULL;

insertNode(&list1,60);

insertNode(&list1,50);

insertNode(&list1,40);

insertNode(&list1,30);

insertNode(&list1,20);

insertNode(&list1,10);

mysteryA(&list1);

structNode*list2=NULL;

insertNode(&list2,10);

insertNode(&list2,20);

insertNode(&list2,30);

insertNode(&list2,40);

insertNode(&list2,50);

mysteryA(&list2);

insertNode(&list2,60);

mysteryB(&list2,2,4);

13

(c) (7 points) Fill in the blank to complete the following function, which inserts all nodes

of list1 into list2 at the specified position i(with the head of list2 considered

as position 0).

Example)

Then, it should result in a combined list (list 4) of 100, 200, 300, 10, 20, 30, 400, 500.

structNode*list3=NULL;

insertNode(&list3,30);

insertNode(&list3,20);

insertNode(&list3,10);

structNode*list4=NULL;

insertNode(&list4,500);

insertNode(&list4,400);

insertNode(&list4,300);

insertNode(&list4,200);

insertNode(&list4,100);

insertList(&list4,list3,3);

//Insertlist1intolist2atpositioni

void insertList(struct Node **list2, struct Node *list1, int i)

{

if(i<=0){

structNode*tail=list1;

while(tail->next!=NULL)

tail=tail->next;

________________________; /*[Blank1]*/

*list2=list1;

return;

}

structNode*curr=*list2;

intpos=0;

while(curr!=NULL&&pos<i-1){

curr=curr->next;pos++;

}

if(!curr)return;

structNode*temp=curr->next;

________________________; /*[Blank2]*/

structNode*tail=list1;

while(tail->next!=NULL)

tail=tail->next;

________________________; /*[Blank3]*/

}

14

[Answer]

Blank 1: tail->next = *list2

Blank 2: curr->next = list1

Blank 3: tail->next = temp

[Criteria]

· Each wrong answer (-2)

· No answer (-7)

15

7. (13 points) Hash table

(a) (9 points) State whether the following statements about hash table are true or false. If

the statement is true, write True. If not, write False (+1 points for each correct answer, -1

points for each wrong answer. 0 points for no answer)

1) Hash function is an injective function.

Your answer: __________________ False. Collision can happen.

2) A size of range of hash function is lower than array size.

Your answer: __________________ False Generally, a size of range of hash function is same

as ARRAYSIZE.

3) Hash table allows float type keys .

Your answer: __________________ True

4) When you insert N different keys into a hash table of size m, the minimum number of

keys in the same bucket is N/m.

Your answer: __________________ False 0.

5) Dictionary is an ADT specialized for random access.

Your answer: __________________ True

6) Linked list is a data structure for implementing hash table.

Your answer: __________________ False Linked list is not necessary for hash table.

7) Hash collisions can be completely avoided by using a strong hash function.

Your answer: __________________ False It depends on the distribution of keys.

16

8) Time complexity for random access in hash table is not always O(1).

Your answer: __________________ True

9) Hash table which is implemented with linked list can restore the order of input

sequence.

Your answer: __________________ False Hash function is time-invariant.

(b) (2 points) What is the output produced by the following code when inserting “EE”?

Hint: ‘E’ has an ASCII code of 69 (decimal)

unsignedinthash(constchar*x){

inti;

unsignedinth=0U;

for(i=0;x[i]!=‘\0’;i++)

h=h*65599+(unsignedchar)x[i];

returnh%1024;

}

Your answer: __________________

320

(c) (2 points) State 2 reasons why the following code is bad.

unsignedintbad_hash(constchar*key){

returnstrlen(key);

}

Reason 1: ___

Reason 2: ___

17

(Over array size)

A range of the function is not bounded.

(Many collisions. If the answer doesn’t have the word collision, 0 points. E.g. High time

complexity for random search)

The number of collisions will greatly increase

18

8. (15 points) Binary Search Tree

Let us write a C program that implements a binary search tree and its add and remove

operation. Below is the basic code provided for you.

structNode{

 constchar*key;

 intvalue;

 structNode*left;

 structNode*right;

};

structTree{

 structNode*root;

};

structTree*Tree_create(void){

 structTree*t;

 t=(structTree*)calloc(1,sizeof(structTree));

 returnt;

}

(a)~(c) Fill in the blanks to implement add operation of your binary search tree. The

answer should be composed of one single code statement. Points will be deducted for

syntax errors.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

voidTree_add(structTree*t,constchar*key,intvalue){

 structNode*p=(structNode*)malloc(sizeof(struct

Node));

 p->key=key;

 p->value=value;

 p->left=___(a)___;

 p->right=___(a)___;

 structNode**cur=&t->root;

 while(*cur!=NULL){

 if(strcmp(key,(*cur)->key<0))cur=&(*cur)->left;

19

 elseif(strcmp(key,(*cur)->key>0))cur=&(*cur)-

>right;

 else{

 ____(b)____;

 ____(c)____;

 return;

 }

 }

 *cur=p;

}

(a) (2 points) Your answer: __________________________

(b) (3 points) Your answer: __________________________

(c) (3 points) Your answer: __________________________

Solution (No partial point)

(a) NULL

(b) (*cur)->value = value (or other equivalent single line code)

(c) free(p)

(d) (3 points) Implement find_max(struct Node* node) function that returns the maximum

Node in the tree which has the input node as the root. The answer should be composed

of one code block, which consists of one or more code statements. Points will be

deducted for syntax errors.

structNode*find_max(structNode*node){

if(node==NULL)returnNULL;

//(d)Implementyourcodehere

 returnnode;

}

20

Solution (example)

while (node->right != NULL) node = node->right;

(-1pt) minor syntax error

21

(e) (4 points) Implement remove operation of your binary search tree, by filling in the

missing part below. The answer should be composed of one code block, which consists

of multiple code lines. Use find_max function that you implemented in (d). Points will be

deducted for syntax errors.

structNode*Tree_remove_node(structNode*root,intkey){

if(root==NULL)returnNULL;

if(key<root->key)root->left=Tree_remove_node(root-

>left,key);

elseif(key>root->key)root->right=

Tree_remove_node(root->right,key);

else{

if(root->left==NULL&&root->right==NULL){

free(root);

returnNULL;

}

elseif(root->left==NULL){

structNode*temp=root->right;

free(root);

returntemp;

}

elseif(root->right==NULL){

structNode*temp=root->left;

free(root);

returntemp;

}

else{

//(e)Implementyourcodehere

}

22

}

returnroot;

}

voidTree_remove(structTree*t,intkey){

t->root=Tree_remove_node(t->root,key);

}

Solution (example)

struct Node *predecessor = find_max(root->left);

root->key = predecessor->key;

root->value = predecessor->value;

root->left = Tree_remove_node(root->left, predecessor->key);

(-1pt) minor syntax error

(-2pt) Updating only one of key or value or left of root Node, 2pts deduction per missing

components.

(+1pt) find predecessor correctly.

