Spring Semester 2025 EE209 Midterm Exam

Pledging of No Cheating

Note: Please write down your student ID and name, sign on it (draw your signature), and
date it. If you do not fill out this page, we won’t grade your mid-term exam.

M= O AldE X2 A O 2t=0|A ZX|ct OfH A= MXAZEX| HE AYS
MOFRtLICE =20 IEAIE0| R ALRS 32 &S = 20|9s ot LICt

| pledge that | will not participate in any activity of cheating disallowed by this course while
taking this exam online. | will assume full responsibility if any violation is found later.

Student ID: Name:

Signature: Date:

The exam is closed book and notes. Read the questions carefully and focus your answers
on what has been asked. You are allowed to ask the instructor/TAs for help only in
understanding the questions, in case you find them not completely clear. Be concise and
precise in your answers and state clearly any assumption you may have made. All your
answers must be included in the attached sheets. You have 150 minutes to complete your
exam. Be wise in managing your time.

Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

1 /15

/15

/8

/18

/15

/15

N | ol B~ ODN

13

8 /15

Total /104

1. (15 points) C fundamentals and data types

(a) (3 points) Consider the following three integers given in different ways of

representation in C:

a = 0b101101
b = 075
c = Ox3F

Write down a, b, ¢ in decimal form.
[Solution]

a=45 b =61 c¢c=063

(b) (4 points) In an 8-bit two's complement system, for the following numbers, convert
decimal ones into binary and binary ones into decimal representation:

a. -18

b. -128
c. 00110100
d. 10101010

[Solution] 11101110, 10000000, 52, -86

(c) (4 points) Write down the printing output of the following C code snippet:

#include <stdio.h>
int main () {

unsigned char ch = - 1;

printf("a = %d, b = %o, c= %$x\n", ch,
ch, ch);

printf ("sizeof (unsigned char) = %zu

byte(s)", sizeof (unsigned char));
return 0;

}

[Solution]

a =255 b =377, c=ff

sizeof(unsigned char) = 1 byte(s)

(d) (3 points) Consider the following C code snippet. Write down the exact output that
the program would print when executed. Assume all variables are 8-bit signed integers
and that all operations are performed using 8-bit signed arithmetic.

Hint: Operators follow the precedence rule in the following order: additive(higher) >

bitwise > logical(lower)

#include <stdio.h>

int main() {
int a = 3, b = 5;
int x = (a < b) && (b << 1) + 1;
int y = ((x + 2) & b) ©~ (~b);
int z = x | b && y;
printf("x, vy, z = %d, %d, %d\n", x,
Yr z);

return O;

[Solution] x, y, z =1, -5, 1

(e) (1 point) Write down the printing output of the following C code snippet.

#include <stdio.h>
int main () {

int a = 2, b =4, ¢ =5;

int d = at+ * --b + ++c - a * b--;
printf ("d = %d\n", d++);

return O;

[Solution] d=3

2. (15 points) Functions

(a) (6 points) Fill in the blank. Complete ReverseOfstring function that reverses a
string using recursion. The function should modify the string in-place and does not
return any value. It takes three arguments: the string, the index of leftmost character, and
the index of rightmost chracter. For example, given the string EE209, calling

ReverseOfString (EE209,0,4) should result in the reversed string 902EE.

#include<string.h>
#include<stdlib.h>

void ReverseOfString (char *str, int left, int right) {

if (left >= right)
return;

char temp = str[left];

str[left] = strright];

str[right] = temp;

ReverseOfString ((a), (b), (c)):
}
[Criteria]

(a) (2p) str
(b) (4p) left + 1
(c) (4p) right -1

(b) (9 points) Fill in the blank. A symmetrical binary number is an integer whose binary
representation reads the same backward as forward. Complete IsBinarySymmetrical
function that returns 1 if the given integer is symmetrical in its binary form and 0
otherwise. For example, 5 is a symmetrical binary number, because its binary
representation is 101. In contrast, 6 is not symmetrical because its binary representation,

110, is not the same when reversed. Assume that x > 0.

#include <stdio.h>

int IsBinarySymmetrical (int x) {

int numBits = 0;
int temp = x;

while (temp > 0) {
numBits++;

temp = (a)_ ;
}
for (int i = 0; i < numBits / 2; i++) {
int leftBit = __ (b) ;
int rightBit = (c) ;
if (leftBit != rightBit)

return O;

return 1;

}

[Criteria]
(@) Bp) temp / 2

(b) Bp) (x >> i) &1

) (

() Bp) (x >> numBits - 1 —1i) & 1

3. (8 points) Consider the following code written in C. Assume a 64-bit Linux system
(x86-64). For each of the 8 printf statements (commented Line 1 to Line 8), write down
the value, character, or string that is printed. (+1 point for each correct answer, 8 points

maximum)

#include <stdio.h>

int main (void) {

char str[] = "KAIST EE209";

char *p = str;

char *qg = p + 6;

char **r = &p;

printf ("$c\n", *(p + 3)); // Line 1
printf ("%sc\n", gl[-2]); // Line 2
printf ("%c\n", **r); // Line 3
printf ("%zu\n", sizeof(str)); // Line 4
*p — 'k',‘

p += 2;

pl3] = 's';

printf ("$s\n", str); // Line 5
char *u = str;

ut++;

printf ("%c\n", *(++u)); // Line 6
printf ("%c\n", (*(--u))++); // Line 7
printf ("$s\n", --u); // Line 8

return O;

[Criteria] (+1 point for each correct answer)
Line 1: S

Line 2: T

Line 3: K

Line 4: 12

Line 5: KAISTSEE209

Line 6: |

Line 7: A

Line 8: kBISTSEE209

4. (8 points) Consider the following code written in C. For each of the 4 printf statements
(commented strcmp problem 1 to 4), answer whether the resulting number is positive,

negative, or zero. (+2 points for each correct answer, -1 point for each wrong answer)

#include <stdio.h>
#include <string.h>
#include <ctype.h>

char* mystery function(char *s, int magical number) {
for (int 1 = 0; s[i] != '"\0'; 1i++) {
// check whether the character is an alphabet
if (isalpha(s[i])) {
// check whether the character is a lowercase or
uppercase letter
if (islower(s[i])
s[i] = ((s[i] - 'a' + magical number) % 26) + 'a';
else if (isupper(s[il]))
s[i] = ((s[i]

)

- 'A' + magical number) % 26) + 'A';

}

return s;

int main (void) {
char strl(] "one"; char str2][] "bar";
char str3[] = "CAT"; char str4[] = "PNG";

mystery function(strl, 13);
mystery function(str4, 13);

printf ("$d\n", strcmp(strl, str2)); // strcmp problem 1
printf ("$d\n", strcmp(str2, str3)); // strcmp problem 2
printf(‘%d\n" strcmp (str3, str4)); // strcmp problem 3
printf ("$d\n", strcmp(strd, strl)); // strcmp problem 4

return O;

Answer:

Strcmp problem 1: 0 (zero)
Strcmp problem 2: + (positive)
Strcmp problem 3: 0 (zero)

Strcmp problem 4: - (negative)

5. (15 points) Structures and dynamic memory management

(@) (2 points) Fill in the Blanks

Fill in each blank with the correct term:

In C, the function (i) allocates memory without initializing it, while the
function (ii) allocates memory and sets all bytes to zero. In addition, a(an)
(iii) is a user-defined type that groups variables of different types, whereas
a(an) (iv) stores a collection of elements of the same type.

Answer:

(i) malloc

(ii) calloc

(iii) structure

(iv) array

(b) (3 points) Short Answer (Union vs. Structure)

Consider a structure and a union that both contain an int and a double. Explain the

difference in their memory allocation and state which one typically requires less memory.

Answer:

In a structure, separate memory is allocated for each member so its size is approximately

sizeof(int) + sizeof(double) (plus any padding). In a union, all members share the same
memory area, and its size is that of the largest member (typically sizeof(double)).
Therefore, the union requires less memory because it allocates only enough space for its

largest member.

(€) (4 points) — Bug Identification

Examine the following code snippet:

finclude <stdio.h>
#include <stdlib.h>
#include <string.h>
int main () {
char *buffer = malloc (10);
if (buffer == NULL) {
return 1;
}
strcpy (buffer, “HelloWorld!”);
printf (“Buffer: %$s\n”, buffer);
free (buffer);
printf ("Buffer: %s\n”, buffer);
return 0;

Identify and briefly explain the two bugs in the code, and suggest corrections.

Answer:

1. Buffer Overflow: The string "HelloWorld!" needs 12 bytes (11 characters plus the
null terminator) but only 10 bytes are allocated.

Correction: Allocate memory using malloc(strlen("HelloWorld!") + 1).

2. Dangling Pointer Usage: After free(buffer), the pointer buffer is used in the
subsequent printf, which is undefined behavior because it becomes a dangling
pointer.

Correction: Do not access buffer after freeing it (or set buffer to NULL

immediately after free(buffer)).

(d) (6 points) Code Output with Complex Structure and Dynamic Memory

Examine the following code snippet and determine the output when main() is executed.

#include <stdio.h>
#include <stdlib.h>

typedef struct {
char *data; int id;

} Record;

int my strlen(const char *s) {

int 1 = 0;
while (s[i])
i++;

return i;

int main () {

rl->data = malloc (6);

char alpha[] = "Alpha", betal]

return O;

for (int i = 0; 1 < sizeof(alpha); i++)

Record *rl = malloc (sizeof (Record)), *r2 = malloc(sizeof (Record));
r2->data = malloc (6);
"Beta";

rl->datal[i] = alphalil];

for (int 1 = 0; i < sizeof (beta); i++) r2->datal[i] = betalil;
rl->id = 12; r2->id = 34;
*(rl->data + 2) = *(r2->data + 1);
int len = my strlen(r2->data);
char *newData = malloc(len+2);
for (int 1 = 0; 1 < len; 1i++)
newData[l] = r2->datali];
newData[len] = '0' 4+ (rl->id % 10);
newData[len+1l] = "\0';
free(r2->data);
r2->data = newData;
printf ("$s(%d) %s(%d) \n", rl->data, rl->id, r2->data, r2->id);
free(rl->data); free(r2->data); free(rl); free(r2);

Note: In ASCII, the digits '0" through '9" are stored consecutively. The character '0" has an

integer value of 48. Thus, to convert an integer (0-9) to its corresponding character, you

add '0' to the integer.
Answer:

Aleha(12) Beta2(34)

10

6. (15 points) Linked Lists

We implement a singly linked list and two functions for modifying the list. Based on the

below structure and functions, answer the following questions. A function

insertNode (struct Node **head, int value) inserts a new node at the head.

#include <stdlib.h>

struct Node {
int value;
struct Node *next;

}i

void mysteryA (struct Node **head) ({

struct Node *prev = NULL, *curr = *head, *next;
while (curr) {

next = curr->next;

curr->next = prev;

prev = curr;

curr = next;

}

*head = prev;

void mysteryB (struct Node **head, int i, int 3j) {
struct Node *prev i = NULL, *curr i = *head;

struct Node *prev j = NULL, *curr j = *head;

for (int pos = 0; curr i != NULL && pos < i; pos++)
prev_i = curr i;
curr i = curr i->next;

}

for (int pos = 0; curr j != NULL && pos < Jj; pos++)
prev_j = curr_ J;
curr j = curr_ j->next;

}

if (prev_ i) prev i->next = curr j;

else *head = curr j;

if (prev_j) prev_j->next = curr i;

else *head = curr i;

struct Node* temp = curr i->next;

curr i->next = curr j->next;

curr_ j->next temp;

11

(a) (4 points) Write the final sequence of node values (from head to tail) after this

operation on an empty list?

struct Node *listl = NULL;
insertNode (&1istl, 60)
insertNode (&1listl, 50)
insertNode (&1istl, 40);
(&1istl, 30)
insertNode (&1istl, 20)
insertNode (&1istl, 10)
mysteryA(&listl);

insertNode

[Answer]
60, 50, 40, 30, 20, 10

(mysteryA: reverse entire list order)

[Criteria]

7 No partial point

(b) (4 points) Write the final sequence of node values (from head to bottom) after this

operation on an empty list?

struct Node *list2 = NULL;
insertNode (&1ist2, 10)
insertNode (&1list2, 20)
insertNode (&1list2, 30);
insertNode (&1ist2, 40)
insertNode (&1list2, 50)
mysteryA(&list2);
insertNode (&1ist2, 60);
mysteryB(&list2, 2, 4);

[Answer]
60, 10, 40, 30, 20, 50

(mysteryB: swap two node at indices i and)

[Criteria]

1 No partial point

(c) (7 points) Fill in the blank to complete the following function, which inserts all nodes
of 1istl into 1ist2 at the specified position i (with the head of 1ist2 considered

as position 0).

// Insert listl into list2 at position i
void insertlList (struct Node **1ist2, struct Node *1listl, int 1)
{
if (1 <= 0) {
struct Node *tail = listl;
while(tail->next != NULL)
talil = tail->next;

; /* [Blank 1] */
*1list2 = listl;
return;
}
struct Node *curr = *1list2;
int pos = 0;
while (curr != NULL && pos < i - 1) {
curr = curr->next; pos+t++;
}
if (!curr) return;

struct Node *temp curr->next;

; /* [Blank 2] */

struct Node *tail = listl;
while (tail->next != NULL)
talil = tail->next;

; /* [Blank 3] */

Example)

struct Node *1list3 = NULL;
insertNode (&list3, 30);
insertNode (&1list3, 20);
insertNode (&1ist3, 10);
struct Node *list4 = NULL;
insertNode (&list4, 500);
insertNode (&list4d, 400);
insertNode (&list4, 300);
(&1ist4, 200);
insertNode (&list4, 100);
insertList (&1list4, 1list3, 3):;

Then, it should result in a combined list (list 4) of 100, 200, 300, 10, 20, 30, 400, 500.

insertNode

13

[Answer]
Blank 1: tail->next = *1ist2
Blank 2: curr->next = 1istl

Blank 3: tail->next = temp

[Criteria]
e Each wrong answer (-2)

e No answer (-7)

14

7. (13 points) Hash table
(a) (9 points) State whether the following statements about hash table are true or false. If
the statement is true, write True. If not, write False (+1 points for each correct answer, -1

points for each wrong answer. 0 points for no answer)

1) Hash function is an injective function.

Your answer: False. Collision can happen.

2) A size of range of hash function is lower than array size.

Your answer: False Generally, a size of range of hash function is same

as ARRAYSIZE.

3) Hash table allows float type keys .

Your answer: True

4) When you insert N different keys into a hash table of size m, the minimum number of

keys in the same bucket is N/m.

Your answer: False O.

5) Dictionary is an ADT specialized for random access.

Your answer: True

6) Linked list is a data structure for implementing hash table.

Your answer: False Linked list is not necessary for hash table.

7) Hash collisions can be completely avoided by using a strong hash function.

Your answer: False It depends on the distribution of keys.

15

8) Time complexity for random access in hash table is not always O(1).

Your answer: True

9) Hash table which is implemented with linked list can restore the order of input

sequence.

Your answer: False Hash function is time-invariant.

(b) (2 points) What is the output produced by the following code when inserting "EE"?

Hint: 'E' has an ASCIl code of 69 (decimal)

unsigned int hash(const char *x) {
int 1i;
unsigned int h = 0U;
for (i=0; x[i] != *\O0’; i++)
h = h * 65599 + (unsigned char)x[i];
return h % 1024;
}

Your answer:

320

(c) (2 points) State 2 reasons why the following code is bad.

unsigned int bad hash(const char* key) {
return strlen (key);

}

Reason 1:

Reason 2:

16

(Over array size)

A range of the function is not bounded.

(Many collisions. If the answer doesn’t have the word collision, 0 points. E.g. High time
complexity for random search)

The number of collisions will greatly increase

17

8. (15 points) Binary Search Tree
Let us write a C program that implements a binary search tree and its add and remove

operation. Below is the basic code provided for you.

struct Node {
const char *key;
int value;
struct Node *left;
struct Node *right;
bi
struct Tree {
struct Node *root;
bi
struct Tree *Tree create(void) {
struct Tree *t;
t = (struct Tree *)calloc(l, sizeof(struct Tree));

return t;

(a)~(c) Fill in the blanks to implement add operation of your binary search tree. The
answer should be composed of one single code statement. Points will be deducted for

syntax errors.

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

void Tree add(struct Tree *t, const char *key, int value) {
struct Node *p = (struct Node *)malloc(sizeof (struct
Node)) ;
p—>key = key;

p->value = value;

p—>left = (a) s

p->right = (a) 7

struct Node **cur = &t->root;
while (*cur != NULL) {

if (strcmp(key, (*cur)->key < 0)) cur = &(*cur)->left;

else if (strcmp(key, (*cur)->key > 0)) cur = &(*cur)-

>right;
else {
(b) ;
(c) ;
return;
}
}
*cur = p;

(@) (2 points) Your answer:

(b) (3 points) Your answer:

(c) (3 points) Your answer:

Solution (No partial point)
(a) NULL
(b) (*cur)->value = value (or other equivalent single line code)

(c) free(p)

(d) (3 points) Implement find_max(struct Node* node) function that returns the maximum

Node in the tree which has the input node as the root. The answer should be composed

of one code block, which consists of one or more code statements. Points will be

deducted for syntax errors.

struct Node *find max (struct Node *node) {
if (node == NULL) return NULL;

// (d) Implement your code here

return node;

19

Solution (example)

while (node->right != NULL) node = node->right;

(-1pt) minor syntax error

20

(e) (4 points) Implement remove operation of your binary search tree, by filling in the

missing part below. The answer should be composed of one code block, which consists

of multiple code lines. Use find_max function that you implemented in (d). Points will be

deducted for syntax errors.

struct Node* Tree remove node (struct Node *root, int key) {

if (root == NULL) return NULL;

if (key < root->key) root->left = Tree remove node (root-
>left, key);
else if (key > root->key) root->right =
Tree remove node (root->right, key);
else {
if (root->left == NULL && root->right == NULL) {
free(root);
return NULL;
}
else if (root->left == NULL) {
struct Node *temp = root->right;
free (root) ;
return temp;
}
else if (root->right == NULL) {
struct Node *temp = root->left;
free(root);
return temp;
}

else {

// (e) Implement your code here

21

}

return root;

void Tree remove (struct Tree *t, int key) {
t->root = Tree remove node (t->root, key);

}

Solution (example)

struct Node *predecessor = find_max(root->left);
root->key = predecessor->key;

root->value = predecessor->value;

root->left = Tree_remove_node(root->left, predecessor->key);

(-1pt) minor syntax error

(-2pt) Updating only one of key or value or left of root Node, 2pts deduction per missing

components.

(+1pt) find predecessor correctly.

22

