
 Spring Semester 2024

 KAIST EE209

 Programming Structures for Electrical Engineering

 Midterm Exam

 Date: 2024.04.15

 Time: 13:00 ~ 14:10

 Student ID:

 Name:

 The exam is closed book and notes. Read the questions carefully and focus your answers
 on what has been asked. You are allowed to ask the instructor/TAs for help only in
 understanding the questions, in case you find them not completely clear. Be concise and
 precise in your answers and state clearly any assumption you may have made. All your
 answers must be included in the attached sheets. You have 70 minutes to complete your
 exam. Be wise in managing your time.
 Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

 1 /10

 2 /10

 3 /15

 4 /10

 5 /8

 6 /18

 7 /10

 8 /10

 9 /9

 Total /100

 1

 Student ID: Name:

 1. Please answer the following questions. (10 pts)

 For Question 1, assume all programs in this exam run on 64-bit Linux (x86-64). That
 is, assume that the code runs on eelabg1.kaist.ac.kr

 a. What is the output of this code? (1 pt)

 unsigned int a = 0xffffffff;
 printf("%d\n", a + 8);

 i. 7
 ii. 8
 iii. 9
 iv. None of above (due to undefined behaviors)

 Answer: i

 b. What is the output of this code? (1 pt)

 int a, b;
 printf(“%d\n”, a=b=3);

 i. 3
 ii. 1
 iii. 0
 iv. None of above (due to undefined behaviors)
 v. compile error

 Answer: i

 2

 Student ID: Name:

 c. What’s the output of this code snippet (output of f1(a, b, c))? (%zu prints the
 return value of the sizeof function.) (6 pts)

 void f(int a[5], int b[], int *c) {
 printf(“1: %zu 2:%zu 3:%zu 4:%zu 5:%zu 6:%zu \n”,

 sizeof(a), sizeof(b), sizeof(c),
 sizeof(*a), sizeof(*b), sizeof(*c));

 }

 int A[5] = {1, 2, 3, 4, 5};
 int B[3] = {1, 2, 3};
 int *C = {1, 2, 3, 4};
 f(A, B, C);

 Output: (1 pt for each)
 1: ____
 2: ____
 3: ____
 4: ____
 5: ____
 6: ____

 Answer: 1~3: 8, 4~6: 4

 d. What’s the output of this code snippet? (2 pts)

 int i, j, r1, r2, r3;
 i = 36;
 j = 144;
 r1 = i ^ j;
 r2 = r1 >> 2;
 r3 = r1 & r2;
 printf(“r1=%d, r3=%d\n”, r1, r3);

 Output: (1 pt for each)
 r1: ______
 r3: ______

 Answer: r1=180, r3=36

 3

 Student ID: Name:

 2. Please implement the following functions. (10pts)

 a. Implement strncmp(const char* p1, const char* p2, int n) . This
 function does the same job as strcmp() except that it compares only the first n
 characters of the two input strings. This function compares the first n characters of
 the input strings, p1 and p2 , and returns a negative(/positive) integer if p1 comes
 earlier(/later) than p2 or 0 if they are the same. (For the purpose of this problem,
 assume that the return value of strcmp() or strncmp() is one of -1, 0, and 1.)
 For full credit, your code should be both correct and efficient. (No need to handle the
 input errors such as NULL pointers for p1 , p2 or a non-positive n .) (5 pts)

 int strncmp(const char *p1, const char *p2, size_t n)
 {

 unsigned char c1, c2;
 /* fill the code below*/

 return 0;
 }

 Answer:
 while (n) {

 c1 = *p1++;
 c2 = *p2++;
 if (c1 != c2)

 return c1 < c2 ? -1 : 1;
 if (!c1)

 break;
 count--;

 }
 Grading Criteria.

 4

 Show correct behaviors of the function: 5pt
 1 pt deduction for all the minor syntax errors (-1pt at max)

 -typo, missing semicolon, bracket, etc
 1 pt deduction each for each wrong behavior (-4pt at max)

 -opposite return values
 -wrong return values for corner cases
 -wrong comparison of characters
 -wrong iteration
 -etc

 Otherwise (Answer is incomplete or not functional): 0pt

 Student ID: Name:

 b. Implement strncpy(char *dest, const char *src, size_t n) ; which
 copies n bytes of src to dest. It is similar to strcpy() , except that at most n bytes of
 src are copied. Warning: If there is no NULL byte among the first n bytes of src , the
 string placed in dest will not be NULL-terminated. If the length of src is less than
 n , strncpy() writes additional NULL bytes to dest to ensure that a total of n
 bytes are written. Write the body of the function. Of course, you should not call any C
 runtime library function inside the body. For full credit, your code should be both
 correct and efficient. (No need to handle the input errors such as NULL pointers for
 dest , src or a non-positive n .) (5 pts)

 char* strncpy(char* dest, const char *src, size_t n)
 {

 /* fill the code below*/

 return dest;
 }

 5

 Answer:
 char *p = dest;
 size_t i;

 while (n && *src) {
 *p++ = *src++;
 n--;

 }

 for (i = 0; i < n; i++)
 p++ = 0;

 Grading Criteria.
 Show correct behaviors of the function: 5pt
 1 pt deduction for all the minor syntax errors (-1pt at max)

 -typo, missing semicolon, bracket, etc
 1 pt deduction each for each wrong behavior (-4pt at max)

 -making dest NULL-terminated even if there is no NULL byte among the first n bytes
 of src
 -missing additional NULL bytes for dest to ensure that a total of n bytes are written
 -wrong copy of bytes
 -wrong iteration
 -wrong inference to src or dest
 -wrong results at corner cases
 -etc

 Otherwise (Answer is incomplete or not functional): 0pt

 6

 Student ID: Name:

 3. Please refer to the code below. (15pts)

 void swap(int* a, int* b){ int t = *a; *a = *b; *b = t; }
 /* Partition takes array, sets the pivot element to arr[high] and
 rearranges an array such that items less than or equal to the pivot
 stays at the left of the array. It returns the pivot position */

 int partition (int arr[], int low, int high)
 {

 int pivot = arr[high];
 int i = (low - 1);
 for (int j = low; j <= high- 1; j++) {

 if (arr[j] <= pivot) {
 i++;
 swap(&arr[i], &arr[j]); // smaller than pivot

 }
 }
 swap(&arr[i + 1], &arr[high]); // move pivot to arr[i+1]
 return (i + 1); // pivot location

 }

 a. Fill in the blank to complete the myquicksort function that performs quicksort. use
 the function(s) given above. Do nothing when the low is greater than or equal to
 high. (5 pts)

 void myquicksort (int arr[], int low, int high){

 Answer :
 if (low < high) {

 int pi = partition(arr, low, high);

 myquicksort (arr, low, pi - 1); // Before pi
 myquicksort (arr, pi + 1, high); // After pi

 }

 syntax error: -1pt

 }

 7

 Student ID: Name:

 b. Consider the following integer array arr . You sort the array arr with the myquicksort
 you have written in the question above. Show the contents of array arr[] each time
 after the partition is called. Assume that low is 0 and high is 9. (5 pts)

 int arr[] = {90, 20, 37, 55, 41, 67, 15, 4, 18, 29};

 Answer :
 20 15 4 18 29 67 90 37 55 41
 15 4 18 20 29 67 90 37 55 41
 4 15 18 20 29 67 90 37 55 41
 4 15 18 20 29 37 41 67 55 90
 4 15 18 20 29 37 41 67 55 90
 4 15 18 20 29 37 41 55 67 90

 8

 Student ID: Name:

 c. Consider the following integer array arr . You sort the array arr[] with the
 myquicksort you have written in the question above. Show the contents of array
 arr[] each time after the partition is called. Assume that low is 0 and high is 9.
 (5 pts)

 int arr[] = {4, 15, 18, 20, 29, 37, 41, 55, 67, 90}

 Answer :
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90
 4 15 18 20 29 37 41 55 67 90

 9

 Student ID: Name:

 4. For the following code, similar to what was presented during the lecture. What value of i will
 be printed by Line A in this code? (10 pts.)

 #include <stdio.h>
 int i;

 void print_one_row(void)
 {

 for (i = 1; i <= 10; i++)
 printf("*");

 }

 void print_all_rows(void)
 {

 for (i = 1; i <= 10; i++) {
 printf("1. i = %d\n",i);
 print_one_row();
 printf("\n");

 }
 }

 int main() {
 print_all_rows();
 printf("i = %d\n",i); // —------- Line A

 }

 ANSWER : i = 12 (partial 2pts if i = 11 is provided)

 10

 Student ID: Name:

 5. Please show the output of the program below. (8pts, 1pt each)

 #include <stdio.h>
 int var = 0;
 int f1(int var) {

 var +=1 ;
 return var ;

 }
 int f2() {

 var +=3 ;
 return var ;

 }
 int f3() {

 int var = 0 ;
 var += 100 ;
 return var ;

 }
 int f4() {

 static int var = 0 ;
 var += 17 ;
 if (var <= 20) {

 return (var + 3);
 }
 return (var + 6);

 }
 int main() {

 printf("f1 (1): %d\n", f1(1));
 printf("f1 (2): %d\n", f1(1));
 printf("f2 (1): %d\n", f2());
 printf("f2 (2): %d\n", f2());
 printf("f3 (1): %d\n", f3());
 printf("f3 (2): %d\n", f3());
 printf("f4 (1): %d\n", f4());
 printf("f4 (2): %d\n", f4());

 }

 Answer : 1pt deduction for wrong format
 f1 (1): 2
 f1 (2): 2
 f2 (1): 3
 f2 (2): 6
 f3 (1): 100
 f3 (2): 100
 f4 (1): 20
 f4 (2): 40

 11

 Student ID: Name:

 6. Answer the following questions (18pts).
 a. When the following code snippet runs, what will be printed? (3pts)

 int i = 1;
 int *p = &i;
 *p = 2;
 printf(“%d, %d, %d\n”, i, *p, (i == *p));

 Answer:
 2, 2, 1
 1pt Each.

 b. When the following code snippet runs, what will be printed? (5pts)

 int i, j;
 int *p = &j, *q = &i;
 int **k = &q;
 *p = 1;
 *q = 2;
 *k = q;
 k = &q;
 *k = &j;
 *p = 3;
 **k = 4;
 printf(“i: %d, j: %d\n”, i, j);

 Answer:
 i: 2, j: 4
 i (2pt), j (3pt)

 12

 Student ID: Name:

 c. When the following code snippet runs, what will be printed? (10pts)

 #include <stdio.h>

 int main() {
 int num_arr[4][5] = {{0,1,2}, {3,4}, {5,6,7,8}, {9}};
 int *ptr3;
 printf("Hint: num_arr[1] (%p), &num_arr[1][0] (%p),
 num_arr+1 (%p) are all same!\n", num_arr[1],
 &num_arr[1][0], num_arr+1);
 ptr3 = *(num_arr + 2);
 printf("*ptr3: %d\n", *ptr3);
 printf("*(&num_arr[1][2]+1):%d\n", *(&num_arr[1][2]+1));
 printf("*(num_arr[2] + 5): %d\n", *(num_arr[2] + 5));
 printf("sizeof(num_arr) %d\n", (int)sizeof(num_arr));
 printf("sizeof(num_arr[3]) %d\n",
 (int)sizeof(num_arr[3]));

 }

 Answer:
 Hint: num_arr[1] (0x7ffcc5fb6224), &num_arr[1][0] (0x7ffcc5fb6224),
 num_arr+1 (0x7ffcc5fb6224) are all same!
 *ptr3: 5
 *(&num_arr[1][2]+1):0
 *(num_arr[2] + 5): 9
 sizeof(num_arr) 80
 sizeof(num_arr[3]) 20

 Line 1: 0pt (This line is not graded.)
 Line 2: 2pt
 Line 3: 2pt
 Line 4: 2pt
 Line 5: 2pt
 Line 6: 2pt
 Numbers only at each line: 0pt

 13

 Student ID: Name:

 7. Below code is finding the substring and concatenating the two strings. Answer the questions
 below (10pts).

 #include <stdio.h>

 char *strcat(char *dest, const char *src)
 {

 char *tmp = dest;

 while (*dest)
 dest++;

 while ((*dest++ = *src++) != '\0')
 ;

 return tmp;
 }

 char *strchr(const char *s, int c) {
 for (; *s != (char)c; ++s)

 if (*s == '\0')
 return NULL;

 return (char *)s;
 }

 int main ()
 {

 char *name1 = "Happy";
 const char *name2 = " OSLAB!";
 char *end, target = 'y';

 *end = strchr(name1, target);
 strcat(name1, name2);

 printf("Question 1 : %s %s\n", end, target);
 printf("Question 2: %s\n", name1);

 }

 a. Fix the three bugs in the above code (5pts).
 (i) char *name1 → char name1 [100]
 (ii) *end → end
 (iii) "Question 1 : %s %s\n" → “Question 1 : %s %c\n”

 or any other possible errors
 1 answer → 1.5pts, 2 answers → 3pts, 3 answers → 5pts

 b. After fixing the bug, print the output of the program (5pts).
 (iv) Question 1 : y OSLAB! y
 (v) Question 2: Happy OSLAB!

 14

 15

 Student ID: Name:

 8. Implement the linked list (10pts).

 struct list_head {
 struct list_head *next, *prev;

 };

 void __list_add(struct list_head *new,
 struct list_head *prev,
 struct list_head *next) {

 next->prev = new;
 new->next = next;
 new->prev = prev;
 prev->next = new;

 }

 /**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 */
 void list_add(struct list_head *new, struct list_head *head) {

 /* Question (a) */
 }

 /**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 */
 void list_add_tail(struct list_head *new, struct list_head *head){

 /* Question (b) */
 }

 a. Code the list_add() with __list_add() (5pts)
 Answer : __list_add(new, head, head->next);
 If the answer gives partially correct actions, give partial points
 (desired actions: new→next=head→next, new→prev=head, head→next=new,
 (head→next)→prev=new).

 b. Code the list_add_tail() with using __list_add() (5pts)
 Answer : __list_add(new, head->prev, head);
 If the answer gives partially correct actions, give partial points.

 16

 Student ID: Name:

 9. Dynamic Memory Allocation (9pts)
 a. Is there any potential problem in the following? If so, please identify the problem

 (3pts).

 p = malloc(…);
 q = malloc(…);
 p = q;
 free(p);
 free(q)

 Answer : the memory allocated by the first malloc() is leaked.(+3)
 - Semicolon miss(+1)
 - Double free(+1)

 - Any potential problem worth considering(+1)

 b. Is there any potential problem in the following? If so, please identify the problem
 (3pts).

 int *a; int n = 10;
 a = malloc(n * sizeof(int));

 for (int i = 0; i <= n; i++)
 a[i] = 0;

 Answer : when we access a[n], unallocated memory is accessed. potential memory
 corruption can occur. (+3)

 - Any potential problem worth considering(+1)

 c. Is there any potential problem in the following? If so, please identify the problem
 (3pts).

 #include <string.h>

 char *p;
 int n = 10;
 p = (char *)malloc(n + 1);
 strcpy(p, “abc”);

 Answer : No Problem(+3)
 - No initialization is required as the allocated area serves as the destination for

 copying
 - Any potential problem worth considering(+3)

 em.

 17

