
Spring Semester 2023
EE209: Programming Structures for Electrical Engineering

Mid-term Exam

Closed book/notes/friends/electronic devices/everything.
Write everything in English.

Write your student ID and name on every page.
Hand it in by 3:50 PM

PLEASE MAKE YOUR HANDWRITING LEGIBLE.

Code of Conduct

● All coats and jackets should be placed on the back of each candidate’s chair. All notes and books,
pencil cases, turned-off cell phones, laptops, and other unauthorized aids, and purses should be
stored inside the candidate’s knapsack or large bag, which should then be closed securely and
placed under the candidate’s chair. Candidates are NOT allowed to have a pencil case on their
desk; any pencil cases found on desks will be searched. All watches and timepieces on desks will
be checked. Candidates are not allowed to touch their knapsack or bag or the contents until the
exam is over. Candidates are not allowed to reach into the pockets or any part of their coat or jacket
until the exam is over.

● Candidates shall not communicate with one another in any manner whatsoever during the
examination. Candidates must stay in the examination room unescorted for any reason, including
using the washroom.

● No materials or electronic devices shall be used or viewed during an examination except those
authorized by the Chief Presiding Officer or Examiner. Unauthorized materials include, but are
not limited to: books, class notes, or aid sheets. Unauthorized electronic devices include, but are
not limited to, cellular telephones, laptop computers, tablets, calculators, MP3 players (such as an
iPod), Personal Digital Assistants (“PDA” such as a Palm Pilot or Blackberry), electronic
dictionaries, Smart Watches and Smart Glasses.

● Candidates who use or view any unauthorized materials or electronic devices while their
examination is in progress - or who assist or obtain assistance from other candidates or any
unauthorized source – will get the grade F and face possible suspension.

● At the conclusion of an examination, all writing shall cease. The Chief Presiding Officer may seize
the papers of candidates who fail to observe this requirement, and a penalty may be imposed.

I have read and adhere to the code of conduct. My signature on this page means my pledge to abide
by these standards.

 Signature: ___________________________________ Date: ____________________

2

Name:

Student ID:

Read the questions carefully and focus your answers on what has been asked. You are allowed to
ask the instructor/TAs for help in understanding the questions in case you find them unclear. Be
concise and precise in your answers, and state clearly any assumption you may have made. You
have 165 minutes (1:00 PM – 3:45 PM) to complete your exam. Be wise in managing your time.
Good luck.

Question 1 / 30

Question 2 / 10

Question 3 / 20

Question 4 / 20

Question 5 / 15

Question 6 / 25

Extra 5 points

Total / 120

3

SID: Name:

1. (30 points) Quick Hits

Please read the questions carefully. You get +2 points for each question if you answer the
question correctly. If you do not answer, you get 0 points. If you answer the question
incorrectly, you get -2 points.

(1) ~1 && 1

a. True
b. False

(2) 16 >> 4
a. True
b. False

(3) 0x2B | (! 0x2B)
a. True
b. False

(4) sizeof(5) > sizeof(2L)
a. True
b. False

(5) Convert the decimal number -9 into 8-bit 2’s complement number. 11110111

(6) (4000000000)10 can be represented as int in C.
a. True
b. False

(7) Which of the following is the output generated by the printf statement in the code
segment below?

int x = 3;
int *y;
int *z;

y = &x;
z = y;
(*z)--;

printf("result: %d\n", *y + *z);

a. result: 6
b. result: 5
c. result: 4
d. None of the above.

4

SID: Name:

(8) Which of the following statements regarding pointer variables is FALSE?

a. Working with an uninitialized pointer variable is a compile-time error.
b. The asterisk character (*) is used in two different contexts for pointer

variables; for declaration and dereferencing.
c. The value of a pointer variable can change during the execution of a program.
d. None of the above.

(9) Suppose x is a double. After statements

x = 5.9;
a = (int) x;

have been executed, what is the value of x?
a. 5.9
b. 5
c. 5.0
d. 6

(10) What is the output of the printf statement in the code segment below?

int x = 0x15213F10 >> 4;
char y = (char) x;
unsigned char z = (unsigned char) x;
printf("%d, %u", y, z);

a. -241, 15
b. -15, 241
c. -241, 241
d. -15, 15

(11) Place parenthesis in the following expression to explicitly show the order of
evaluation. For example, a + b * c ⇒ (a + (b * c))

3 + * p ++⇒ (3 + (* (p ++)))

(12) Which of the following statements regarding user-defined functions is FALSE?

a. A variable declared in the local declaration section of a function can have the
same identifier as one of the parameters within the same function.

b. Data sent from the calling function to the function being called will be
received in the same order in which it was passed.

c. Parameters are defined as local variables in the first line of the function
definition and should not be re-defined within the local declaration section of
the function.

d. None of the above.

5

SID: Name:

(13) Which of the following describes the integer value generated by the printf

statement in the code segment below?

int x[5] = {6, 9, 3, 0, 4};
int y[5] = {0};

y = x;

printf("y[0] = %d\n", y[0]);

a. The value displayed will be the integer 6.
b. The value displayed will be the memory address represented by the array x.
c. No integer value will be displayed due to a compiler error regarding the

assignment statement.
d. None of the above.

(14) Which of the following is the correct ordering (left-to-right) of a file’s compilation

cycle (a filename with no extension is an executable)?
a. foo.c ⇒ foo.o ⇒ foo.s ⇒ foo
b. foo ⇒ foo.s ⇒ foo.o ⇒ foo.c
c. foo.c ⇒ foo.s ⇒ foo ⇒ foo.o
d. foo.c ⇒ foo.s ⇒ foo.o ⇒ foo

(15) From the following C declaration, what does f represent?

int *(*f[3])();

a. an array of pointers to pointers to functions that return int.
b. a pointer to an array of functions that return a pointer to int.
c. a function that returns a pointer to an array of pointers to int.
d. an array of pointers to functions that return a pointer to int.

6

SID: Name:

2. (10 points) Linking

(1) (6 points) Consider the executable object file a.out, which is compiled and linked
using the command:

ee209> gcc -o a.out main.c foo.c

Files main.c and foo.c consist of the following code. What is the output of a.out?

/* main.c */
#include <stdio.h>

static int a = 1;
int b = 2;
int c;

int main(){
 int c = 3;

 foo();
 printf("a=%d, b=%d, c=%d\n", a,
b, c);
 return 0;
}

/* foo.c */
int a, b, c;

void foo(){
 a = 4;
 b = 5;
 c = 6;
}

Answer: a= 1, b= 5, c= 3

(2) (4 points) Consider the following two blocks of code contained in separate files. Will

the code be successfully compiled, linked, and ran? If not, at which step does the code
fail?

/* main.c */
int i = 0;
int main() {
 foo();
 return 0;
}

/* foo.c */
int i = 1;
void foo() {
 printf("%d", i);
}

Answer: it will fail to link

7

SID: Name:

3. (20 points) Debugging

(1) (10 points) This function should print every alternate character starting from the
second character of the input (i.e., for an input of "Hello world!", the output should be
"elol!"). Note: Assume that ASCII characters are given as input

(i) When does it produce the wrong answer?

Full (3) points if the answer describes the following.
- When the number of characters given as input is odd.
- When EOF is given in the getchar() call inside putchar()
- When EOF is detected at the alternating iteration.

 Deduct 1 point if the answer is not generalizable (only state a few cases).
 Deduct 1 point if the answer describes wrong behavior.

(ii) Rewrite the code to fix the bug.

Full (7) points if the code in the answer outputs the alternate characters
without any problem.

 Deduct 3 points if the code is not executable, but correctly describes the right
way to solve the bug (pseudo-code).

 Deduct 1 point if there is a minor syntactical error (e.g. missing semicolon).

Sample solution)
void q2b(void) {
 int c;
 for (;;) {
 c = getchar();
 if (c == EOF)
 return;

c = getchar();
 if (c == EOF)
 return;

void q2b(void) {
 while (getchar() != EOF)
 putchar(getchar());
}

8

 putchar(c);
 }
}

SID: Name:

(2) (10 points) This function should return the maximum value in a non-empty array a of

n integers.

(i) When does this code return the wrong value?

Full (3) points if the answer describes the following.
- When the array is composed entirely of negative integers.

 Deduct 1 point if the answer is not generalizable (only state a few cases).
 Deduct 1 point if the answer describes wrong behavior.

(ii) Modify the code to correct the bug.
Full (7) points if the code in the answer returns the maximum value of an
array consisting of only negative integers without any problem.

 Deduct 3 points if the code is not executable, but correctly describes the right
way to solve the bug (pseudo-code).

 Deduct 1 point if there is a minor syntactical error (e.g. missing semicolon).

Sample solution)
int q2c(int *a, int n) {

int currmax, i;
assert(a != NULL);
assert(n > 0);

int q2c(int *a, int n) {
 int currmax = 0, i;
 assert(a != NULL);
 assert(n > 0);
 for (i = 0; i < n; i++)
 if (a[i] > currmax)
 currmax = a[i];
 return currmax;
}

9

currmax = a[0];
for (i = 1; i < n; i++)

if (a[i] > currmax)
currmax = a[i];

return currmax;
}

SID: Name:

4. (20 points) Recursion

(1) (10 points) Look-and-say Sequence:
In mathematics, the look-and-say sequence is a sequence of integers where the n-th
term is generated by reading the (n-1)-th term:
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, …
To generate a member of the sequence from the previous member, read off the digits
(0~9) of the previous member, counting the number of digits in groups of the same
digit. For example:
● 1 is read off as "one 1" or 11.
● 11 is read off as "two 1s" or 21.
● 21 is read off as "one 2, then one 1" or 1211.
● 1211 is read off as "one 1, one 2, then two 1s" or 111221.
● 111221 is read off as "three 1s, two 2s, then one 1" or 312211.

We’re going to implement look-and-say by treating each member as a string.

Implement a function lookandsay(s) that takes a member of a sequence and prints out
the next member by reading off the digits of member s, where s is a string (e.g.,
lookandsay(“11”) should print out “21”).

Hint: Use recursion. (You can do this with less than 10 lines of code.)

Note1: printf(“%c”, s[0]) will print out “1” when s= “1”.
Note2: You can use printf() without including the header. Assume the header file is
already included.
Note3: You can assume that an input is a valid string. In other words, you don’t have
to handle corner cases. (e.g. string with non-integers, insufficient memory)

(write your code on the next page)

10

SID: Name:

[Criteria]

• Deduct 0.5 points for each grammatical nit (Syntax)
• Deduct 0.5 points if argument validation statement(i.e. !s or *s==0) does not exists
• Deduct 0.5 points if printf format/order has mistake(i.e %c%d, %d%d), but has correct

arguments.
• Deduct 1 points if the functions of ‘string.h’ are used. e.g) strlen()
• Deduct 3 points if there is a mistake in printing "count" variable(i.e. printf((char)cnt);)

• No deduction: char count_start = ‘0’ & print count_start + count(integer) or
count_start++;

• Deduct 4 points if there is a mistake in logic (i.e. missing single s++, wrong static usage)
• No point for incorrect logic(huge mistake)

• E.g.) Don’t print it to stdio, use EOF or sizeof(s), wrong recursive usage

/* Reads term s (e.g., if s is “1” print 11 to stdio) */
void lookandsay(const char *s)
{

 char c;
 int cnt = 1;
 if (!s) return;
 if (*s==0) return;
 c = s[0];

 while (c==*(++s)) {
 cnt++;
 }
 printf("%d%c", cnt, c);
 lookandsay(s);

}

11

12

SID: Name:

(2) (10 points) Remove duplicate in a string (array of char):

You are asked to write a recursive function that removes consecutive duplicates in a
string. For example, if the input string is “aab”, the output string should be “ab”. The
function modifies the array of char given as the parameter to write the resulting
output string.

When you execute the main() function below, it outputs “[10, Helo World]”.

Fill in the blanks below.

Note: The C library function void *memmove(void *str1, const void *str2, size_t n)
copies n characters from str2 to str1, but for overlapping memory blocks, memmove()
is a safer approach than memcpy().

/* removeDuplicate(int len, char s[]) removes consecutive duplicates
and returns the length of resulting string. It stores the output string
in s[]. So s[] is modified */

int removeDuplicate(int len, char s[])
{
 int k;
 if (__len<=1__) return len; //2 points

 if (s[0] == s[1]) {
 k= removeDuplicate (___len-1___, ____s+1___); //2 points
 memmove(s, s+1, k+1);
 return ___k___; //2 points
 }
 k = removeDuplicate (___len-1___, ___s+1___); //2 points

 return ___k+1___; //2 points
}

int main()
{
 str[] = “Hello World”;
 int k = removeDuplicate(strlen(str), str);
 printf(“[%d, %s]\n”, k, str);
 }

13

SID: Name:

5. (15 points) More Debugging (memory management)!

Consider the following (very buggy) program to read in a series of ints (length of 10) from
stdin and report their sum on stdout:

(1) (5 points) gcc will show a warning on at least two lines. List those line numbers.

Answer: 10, 12, 13
10 (comparison of integers of different signedness),
12 (pointer from integer without a cast, i.e., missing format string)
13 (passing argument discards 'const' qualifier, i.e., free takes a pointer not a pointer
to constant)

[Criteria]
Full points if all the answers are correct (5pts)
 If only 1 line is correct (3pts)

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 enum {LENGTH=10};
5
6 static void printSum(const int aiNums[LENGTH], size_t ulLen) {
7 int iSum = 0;
8 int *piIndex = malloc(sizeof(*piIndex));
9
10 while(*piIndex < ulLen)
11 iSum += aiNums[ulLen--];
12 printf(iSum);
13 free(aiNums);
14 }
15
16 int main(void) {
17 int iScanfReturn;
18 int *piSomeInts, *piThisInt;
19
20 piSomeInts = calloc(LENGTH, sizeof(4));
21 piThisInt = piSomeInts;
22 while((iScanfReturn = scanf("%d", piThisInt)) == 1)
23 piThisInt++;
24 printSum(piSomeInts, piThisInt-piSomeInts);
25 free(piSomeInts);
26 return 0;
27 }

14

 If write more than 2 lines and there have incorrect lines, deduct 1pt per
incorrect line

SID: Name:

(2) (5 points) After fixing the lines mentioned in 5(1) (you don’t have to do so!), there

remain two logic bugs dealing with loop control in printSum. Briefly describe them.
Answer:
(1) *piIndex is not initialized before being used in the loop sustaining condition on
line 10.
(2) ulLen-- does not evaluate to the decremented value, so the array index is initially
out of bounds

Full points if all the answers are correct (5pts)
 If only one is correct (3pts)
 If write comparison of integers of different signedness in line 10 (1pt)
 If answer is correct but did not correct the ulLen-- to --ulLen, deduct (1pt)

(3) (5 points) After fixing the lines mentioned in 5(1), there remain at least two dynamic
memory management issues in printSum. One is that there is no check that malloc did
not return NULL. Describe another error.
Answer: Line 13 frees aiNums, not piIndex. This means that (1) piIndex is never
freed, so this is a memory leak, (2) when line 25 frees piSomeInts, this is a double
free.

Full points if the answer is correct (5pts)
• If write a problem about calloc return, it is not in the printSum function (0pt)

15

SID: Name:

6. (25 points) Linked List and Hash Table

Below is an implementation of a data structure that stores a (key, value) pair. The key is a
double type and the value is an integer type. The key ranges from [0, 1.0). Table.first is the
head of the linked list and Table.array points to “short cuts”. Note all nodes are connected to
the linked list.

“table.c”

#include "table.h"

enum {BUCKET_COUNT = 100};
struct Node {
 double key;
 int value;
 struct Node *next;
};
struct Table {
 struct Node *array[BUCKET_COUNT];
 struct Node *first;
};
unsigned int hash(const double x) {
 assert(x<1.0);
 assert(x>=0.0);
 return x*100;
}
struct Table *Table_create(void) {
 struct Table *t;
 t = (struct Table*)calloc(1, sizeof(struct Table));
 return t;
}

void Table_add(struct Table *t, const double key, int value)
{
 assert(key<1.0);
 assert(key>=0.0);

 int h = hash(key);
 struct Node *p = (struct Node*)malloc(sizeof(struct Node));
 struct Node *q = t->first;

16

SID: Name:

 p->key = key;
 p->value = value;
 p->next = NULL;

 if (q==NULL || q->key> key) {
 t->first = p;
 p->next = q;
 if ((t->array[h]==NULL) || (t->array[h] && t->array[h]->key > key))
 t->array[h] = p;
 return;
 }
 while (q->next!=NULL && q->next->key < key) {
 q = q->next;
 }
 // insert p after q
 p->next = q->next;
 q->next = p;
 if ((t->array[h]==NULL) || (t->array[h] && t->array[h]->key > key))
 t->array[h] = p;
}

void printTable(struct Table *t)
{
 struct Node *q = t->first;
 while (q!=NULL) {
 printf("(%lf, %d) ", q->key, q->value);
 q= q->next;
 }
 printf("\n------------\n");
 for (int i=0;i<BUCKET_COUNT;i++){
 if (t->array[i])
 printf("t->array[%d] = (%lf, %d)\n", i, t->array[i]->key, t-
>array[i]->value);
 }
}

17

SID: Name:

(1) (10 points) Complete the search function below. You will get full credit only if you

use the “shortcut” (i.e., t->array and hash()).

[Criteria]

• Deduct 0.5 ~ 1 points for each grammatical nit (Syntax)
• Deduct 0.5 points if argument validation statement(i.e. t->array[h]==NULL) does not

exists
• Deduct 3 points if it put value to value instead *value
• Deduct 3 points if there exists memory leakage
• Deduct 4 points if there is a mistake in logic (i.e. error in for loop)
• Deduct 7 points if it does not using “shortcut”
• No point for incorrect (huge mistake)

/* Table_search searches the table for the given key. On success, it
returns 0 and the value is set to the corresponding value. Otherwise, it
returns -1. */

int Table_search(Table* t, const double key, int * value)
{
 struct Node *p;
 int h = hash(key);

 if (t->array[h] == NULL)
 return -1;

 for (p=t->array[h]; p!=NULL; p=p->next)
 {
 // optional
 if (h!=hash(p->key))
 return -1;

 if (p->key == key)
 {
 *value = p->value;
 return 0;
 }
 }
 return -1;
}

18

SID: Name:

(2) (10 points) Table_add() provided in “table.c” is suboptimal. How can you improve it?

(i) Please write down the algorithm in steps. To get full credit, the algorithm has

to cover all cases. (Assume that the keys are unique, i.e., the client only uses
unique keys.) For each case, write down how the value of t->array[h] and t-
>first need to change.

[Solution]
h = hash(key)
If h == 0 do
 If t->array[h] == NULL OR t->array[h]->key > key do
 t->array[h] = p
 Insert p at the beginning of a linked list
 t->first = p
 Else do
 Traverse a linked list from the beginning and insert p
Else do
 If t->array[h] == NULL OR t->array[h]->key > key do
 Find an h-k, where t->array[h-k] is not NULL
 Traverse a linked list from t->array[h-k] and insert p
 t->array[h] = p
 Else do
 Traverse a linked list from t->array[h] and insert p

[Criteria]
- Idea of traversing from a middle of a linked list by using hash(). (+1 pts)
- Algorithm can handle the following cases correctly.
(a) t->array[h] is NULL (+1 pts)
(b) t->array[h]->key > key (+2 pts)
(c) t->array[h]->key < key (+2 pts)
(d) h == 0 (+1 pts)

You can get points only if you connect a new node to both previous and next
nodes.

19

(ii) Why is your algorithm faster than the original Table_add()? Please explain it
in detail.

It doesn't need to traverse all nodes by using shortcut.

(3) (5 points) To improve consistency, what would you do to the code provided (“table.c”)

in problem 6? (We are expecting one thing.)

printTable -> Table_print()

