

Spring Semester 2018

KAIST EE209

Programming Structures for Electrical Engineering

Mid-term Exam

Name:

Student ID:

This exam is open book and notes, but closed electronic device. Read the questions carefully

and focus your answers on what has been asked. You are allowed to ask the instructor/TAs for

help only in understanding the questions, in case you find them not completely clear. Be

concise and precise in your answers and state clearly any assumption you may have made.

You have 165 minutes (1:00 PM – 3:45 PM) to complete your exam. Be wise in managing

your time. Good luck.

Question 1 / 10

Question 2 / 20

Question 3 / 15

Question 4 / 20

Question 5 / 20

Question 6 / 15

Total / 100

Name: Student ID:

1

1. (10 points) Numbers

(a) (6 points) What is the range of decimal numbers that can be represented using 7 bits

for each format?

2’s complement:______________ to ______________

1’s complement:______________ to ______________

Unsigned binary:______________ to ______________

(a) (2 points) Convert the 8-bit signed 2’s complement hex number 0xAB to decimal:

(b) (2 points) Compute the decimal value of -12 ^ 23 using 8-bit 2’s complement

encoding:

Name: Student ID:

2

2. (20 points) Small programs

(a) (10 points) Identify all the bugs in the following program.

#include <stdio.h>

struct student {
char name[3];
int counter;

};

void increment(const struct student* s)
{
s.counter++;

}

int main()
{
 struct student s;
 strcpy(s.name, "kim");
 s.counter = 0;
 increment(s);
 return 0;
}

Name: Student ID:

3

(b) (10 points) What is the output of the following program?

#include <stdio.h>
#include <string.h>

int main()
{
 char s[] = "lbjtu\0abc", *p;
 for (p = s; *p; p++)
 --*p;
printf("s: %s\n", s);
printf("s + 6: %s\n", s + 6);
printf("strlen(s): %zu\n", strlen(s));
printf("strlen(s + 6): %zu\n", strlen(s + 6));

 printf("sizeof(s): %zu\n", sizeof(s));
 return 0;
}

Output:

s: _____________________

s + 6: _____________________

strlen(s):_____________________

strlen(s + 6):_____________________

sizeof(s):_____________________

Name: Student ID:

4

3. (15 points) Functions

Write a function that finds the nth fibonacci number. The Fibonacci series are the integers in

the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

where the first two integers in the sequence are 0 and 1, and each subsequent integer is the

sum of the previous two integers. For example, the 0th fibonacci number is 0, and the 4th

fibonacci number is 3.

(a) (5 points) Implement the Fibonacci function using recursion. Assume input n is a

non-negative integer.

int fibonacci_recursive(int n)
{

}

(b) (10 points) Implement the Fibonacci function without using recursion. Assume input

n is a non-negative integer.

int fibonacci_iterative(int n)
{

}

Name: Student ID:

5

4. (20 points) Dynamic storage

Suppose we are dynamically allocating many blocks of memory. While we can free each

allocated block individually, it may be more convenient to free all of them together

through a single function. To implement this functionality, we will maintain a

dynamically-allocated array p of pointers to all the allocations using these two functions:

 mymalloc: allocates a memory block and add its pointer to p

 myfree: frees all the allocated memory blocks using p

You may use the following functions and assume that memory is always available.

void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *ptr);

Fill in the lines below:

#include <stdio.h>
#include <stdlib.h>

void* mymalloc(size_t size, void*** p, int* psize)
{

 *p = _____________________________________

 void *temp = _____________________________________

 return temp;
}

Name: Student ID:

6

void myfree(void **p, int psize)
{

for (int i = 0; i < psize; ++i)
{

 }

}

int main()
{
void** p = NULL;

 int psize = 0;
 mymalloc(sizeof(int), &p, &psize);
 mymalloc(sizeof(char), &p, &psize);
 myfree(p, psize);
 return 0;
}

Name: Student ID:

7

5. (20 points) Linked list

In addition to the linked list functions covered in class (Table_create, Table_add,

Table_search, and Table_free), implement functions for updating and deleting

individual nodes. Duplicates keys may exist, and the following structs are used:

struct Node {
 const char *key;
 int value;
 struct Node *next;
};

struct Table {
 struct Node *first;
};

(a) (10 points) Implement the update function, which finds all the nodes with the given

key and changes their values to the given value.

void Table_update(struct Table *t, const char *key, int value)
{

}

Name: Student ID:

8

(b) (10 points) Implement the delete function, which finds all the nodes with the given

key and deletes them. Make sure the remaining nodes still form a linked list.

void Table_delete(struct Table *t, const char *key)
{

}

Name: Student ID:

9

6. (15 points) C++

(a) (10 points) What is the output of the following program? Briefly explain why each

line is printed.

#include <iostream>

using namespace std;

class B
{
public:
 B() {
 cout << "B()" << endl;
 }
 ~B() {
 cout << "~B()" << endl;
 }
 void f() {
 cout << "B::f()" << endl;
 }
 virtual void vf() {
 cout << "B::vf()" << endl;
 }
};

class D : public B
{
 public:
 D() {
 cout << "D()" << endl;
}
~D() {

 cout << "~D()" << endl;
 }
 void f() {
 cout << "D::f()" << endl;
 }
 void vf() {
 cout << "D::vf()" << endl;
 }
};

Name: Student ID:

10

int main()
{
B b;
D d;

 D* e = (D*)&b;
d.f();
d.vf();
e->f();

 e->vf();
}

Output:

Name: Student ID:

11

(b) (5 points) What is the output of this program? (Hint: look at the arguments of the

swap function carefully.)

#include <iostream>
using namespace std;

void swap(int& a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

int main()
{
 int a = 1;
 int b = 2;
 int c = 3;

 swap(a,b);
 cout << "swap(a,b):" << a << " " << b << " " << c << endl;

 swap(b,c);
 cout << "swap(b,c):" << a << " " << b << " " << c << endl;

 swap(c,a);
 cout << "swap(c,a):" << a << " " << b << " " << c << endl;
}

Output:

swap(a,b): _____________________

swap(b,c): _____________________

swap(c,a): _____________________

