Spring Semester 2024
KAIST EE209

Programming Structures for Electrical Engineering

Final Exam

Date: 2024.06.10

Time: 13:00 ~ 15:30

Student ID:

Name:

The exam is closed book and notes. Read the questions carefully and focus your answers
on what has been asked. You are allowed to ask the instructor/TAs for help only in
understanding the questions, in case you find them not completely clear. Be concise and
precise in your answers and state clearly any assumption you may have made. All your
answers must be included in the attached sheets. You have 150 minutes to complete your
exam. Be wise in managing your time.

Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

1 /15
/10
/10
/10
/15

120

N oo |0 |DN

/10

Total /100

Student ID: Name:

1. (15 pt) Hash table
1.1 (5 pt) The code below describes the ‘hash table’ structure we learned in the lecture.

enum {BUCKET COUNT = 1024};

struct Node ({
const char *key;
int value;
struct Node *next;

}i

struct Table ({
struct Node *array[BUCKET COUNT] ;

void Table add(struct Table *t, const char *key, int value)
{
struct Node *p = (struct Node*)malloc (sizeof (struct Node)) ;
int h = hash(key) ;
p->key =(const char*)malloc(strlen (key) + 1);
strcpy (p->key, key);
p->value = value;
p->next = t-sarrayl[h];
t-s>array[h] = p;

Now, implement Table delete function when the data structure owns a copy of
the key. Hint: As we’ve learned in modularity, well-designed module manages
resource consistently (i.e., a module should free a resource if and only if the module
has allocated that resource). The function should also satisfy the below requirements:
* Return 1 if the node is successfully removed.

* Return 0 if the node with the corresponding key is not found.

» After deletion, all other nodes should remain accessible and should be in the same
order.

* Assume there are no duplicate keys.

* You may use library functions (e.g., int strcmp (const char *stringl, const
char *string2) which returns 0 when string1 is equal to string2).

* You can use hash function. But you may NOT call other hash table functions (e.g.,

Table search).

int Table delete(struct Table *tl, const char *key)

{

struct Node *p, *p prev = NULL;
int h = hash(key) ;

for (p = tl-sarray(h]l; p != NULL; p = p->next) {
Ans)
if (strcmp(key, p->key) == 0) {
if (p prev == NULL) {
tl-s>array[h] = p->next;
} else {

p_prev-snext = p->next;

)

free (p->key) ;
free(p) ;
return 1;

}

return 0;

grading criteria
- any syntax error or minor error: -0.5pts
- logic error
- does not consider when p_prev is NULL or does not consider when p_prev is
not NULL (-1pt)
- others (-1pt)
- no free(p->key): -0.5pts
- no free (p): -0.5pts
- incomplete code but writes some related functions: only 1 pt

1.2 (5 pt) Implement Table subtract function, which deletes the nodes contained in
table ‘t 1’ if their keys are also present in table ‘t2’. The function should return the number of
nodes deleted from t1. You have to use the Table delete function implemented earlier in
this question.

int Table subtract (struct Table *tl, struct Table *t2)
{
struct Node *p;
int b, count = 0;
for (b = 0; b < BUCKET COUNT; b++) {
Ans)
for (p = t2->arrayl[bl; p != NULL; p = p-s>next;) {
count += Table delete(tl, p->key);
}

}

return count;

grading criteria
- any syntax error or minor error: -0.5pt
- logic error
- did not use Table_delete() (-1pt)
- did not rotate the list of each bucket. (-1pt)
- others (-1pt)
- incomplete code but writes some related functions: only 1 pt

1.3 (5 pt) Implement Table merge function, which adds the nodes contained in table ‘t2’
to ‘t1’ if their keys are not already present in table ‘t1’. Also, the function should return the
number of nodes added to t1. You have to use Table add and Table search function in
this question. (Hint: Table search function takes three parameters, (struct Table *t,
const char *key, int *value)and returns 1 if the input ‘key’ exists in hash table t,
otherwise, it returns 0. If the ‘key’ exists in the table ‘t’, the value of the corresponding node
is copied to the input integer pointer ‘value’.)

int Table merge(struct Table *tl, struct Table *t2)

{

struct Node *p;

int b, value, count = 0;
for (b = 0; b < BUCKET COUNT; b++) {
Ans)

for (p = t2->array[bl; p != NULL; p = p->next;) {

if (Table search(tl, p->key, &value) == 0) {
Table add(tl, p->key, p->value);
count++;

}

return count;

}

grading criteria
- any syntax error or minor error: -0.5pts
- logic error
- did not use table_search or table_add (-1pt)
- did not rotate the list of each bucket (-1pt)
- incomplete code but writes some related functions: only 1 pt

Student ID: Name:

2. (10 pt) Assembly
2.1 (5 pt) Given the following assembly code, re-construct the C code that produced it.

.section .rodata
.LC1:

.string "%lu\n"
mysteryl:
0x00400566 <+0>: cmp $0, %$rsi
0x00400569 <+3>: Jjle 0x400599 <mysteryl+51>
0x0040056b <+5>: push $rbp
0x0040056c <+6>: push Srbx
0x0040056d <+7>: sub $0x8, %rsp
0x00400571 <+11>: mov $rsi, %rbx
0x00400574 <+14>: mov rdi, S%rbp
0x00400577 <+17>: sarl $1, %rbx
0x0040057a <+20>: callqg 0x400566 <mysteryl>
0x0040057f <+25>: mov -0x8 (%rbp, %rbx, 8), S%rsi
0x00400584 <+30>: mov $.LC1, %edi
0x00400589 <+35>: mov %$0x0, %eax
0x0040058e <+40>: callg 0x400430 <printf>
0x00400593 <+45>: add $0x8, %rsp
0x00400597 <+49>: pop Srbx
0x00400598 <+50>: pop srbp
0x00400599 <+51>: ret

void mysteryl (long *arr, size t count) /{
if |) A // line 1
; // line 2
printf ("$1lu\n", arr[count - 1]); // line 3
}
1
Answer:

void mysteryl (long *arr, size t count) {
if (count > 0) | // line 1
mysteryl (arr, count / 2); // line 2
printf ("%$lu\n", arr[count - 1]); // line 3

grading criteria
wrong answer — -2 (all wrong answer — get 0 in total)
wrong answer in right form, ex) mystery1(arr, count) — -1

2.2 (5 pt) Given the following assembly code, re-construct the C code that produced it.

int mystery2 (char *paraml, int *param2, int param3) {

int local = strlen(paraml); // line 1
for (int 1 = rand(); 1 < 0 ; 1 += 4) { // line 2
*param2 -= 1i; // line 3
local = 5*local + 14; // line 4

}
return -mystery2 (NULL, &local,param2[1]*param3); // line 5

mystery2:
push $rbp
push Srbx
sub $0x18, $rsp
mov $rsi, $rbx
mov %edx, sebp
callg <strlen>
mov %eax, 0xc (%rsp)
callg <rand>
jmp L2

Ll
sub %eax, (a)
mov Oxc (%rsp), secx
lea Oxe (%rcx, %rcx,4),%ecx
mov %ecx, 0xc (%rsp)

(b)
.L2:
(c)

J1 L1
mov sebp, sedx
imul 0x4 (%rbx) , sedx
lea Oxc (%rsp), %rsi
mov 0x0, %edi

callqg <mystery2>

neg eax
add 0x18, Srsp
pop rbx
pop rbp

ret

Answer

(@): ($rbx) ,(b):add $0x4,%eax ,(c):cmp $0,%eax

mystery2:
push srbp
push srbx
sub S0x18,%rsp
mov %rsi, Srbx
mov sedx, $ebp
callg <strlen>
mov seax, 0xc (srsp)
callg <rand>
Jjmp L2

Ll
sub %eax, (%rbx)
mov Oxc (%rsp), $secx
lea Oxe (%rcx, %rcx,4),%ecx
mov secx, 0xc (srsp)
add $0x4, %eax

.L2:
cmp $0, %eax
J1 L1
mov %ebp, $edx
imul 0x4 (%rbx) , %edx
lea Oxc (%rsp), 3rsi
mov 0x0, $edi
callg <mystery2>
neg eax
add 0x18, $rsp
pop rbx
pop rbp
ret

grading criteria

Only give the points with exact answers

(a) 2
(b) 2
(c) 1

Student ID: Name:

3. (10 pt) Exception
3.1 (2 pt) There are two types of exception: trap and interrupt. Which exception type
corresponds to (a) and (b)?
(a) occurs when a user presses a key on the keyboard.
(b) occurs when program requests heap memory.

Answer: (a):interrupt, (b): trap
Guide for grading - 1 points for each exception type

3.2 (2 pt) Following code denotes the situation where the exception handler kills the
application when the exception occurs. Among the following, select the exception(s)
corresponding to the case of the following code.

int *ptr;
ptr = 0;
*ptr = 1;
1. segmentation fault
2. 10 completion
3. system call
4. divide-by-zero

Answer: 1

3.3 (6 pt) When the user program calls a system call, the trap instruction is executed and the
execution mode changes from the user mode to the kernel mode. It is called “mode switch”.
When the OS switches the CPU from one program to another, the OS saves the registers of
the old process and loads the register values for the new program. Please specify whether
the following situation corresponds to mode switch, context switch or both.

a) privilege level changes (2pt): mode switch.

b) current address map (page table) changes (2pt):context switch

c) current register values are saved (2pt):both

Explanation
a) The privilege level changes when changing from user mode to kernel mode.
During context switch, one process in kernel model is changed to another process in
kernel mode, so the privilege level does not change.

b) A process has a single page table. The page table of a process contains address

maps of both user mode and kernel mode. So the page table does not changes
during mode switch.

In case of context switch, the process is changed so the page table is also changed.
During mode switch, a process in user mode saves its register values to the kernel
stack and turns into the kernel mode.

During context switch, one process in kernel mode saves its register values in the
memory and is switched to other process.

10

Student ID: Name:
4. (10 pt) Memory Allocation

4.1 (3 pt) Consider the list of free memory chunks below. Show the free memory chunks
after “allocate (64)” using “first-fit”.

N

\ 4

A 4

\ 4

48 32 128 64 256

48->32->64->64->256

4.2 (3 pt) Consider the list of free memory chunks below. Show the free memory list after
“allocate (64)” using “best-fit”.

N

A 4
A 4

48 32— 128 64 > 256

48->32->128->256

4.3 (4 pt) Consider the following code. If you run this code, what is going to happen? Is it
going to run forever? Or is the operating system going to kill the program at some point? To
get the full credit, provide detailed reasoning.

#include <stdio.h>
#include <stdlib.h>

int main () {
while (1) {
malloc (0) ;
}

return O;

answer:
malloc (0) allocates a minimal allocation unit of memory. Thus, the memory is exhausted at
the end. This results in the corresponding process to be killed or crashed. .

11

5.

grading criteria

- correct answer without detailed reasoning. 2pt

Student ID: Name:

(15 pt) 10

Consider the following text file “ixt”. It contains 5 lines of string written in text editor (vi,

emacs, nano). EOF means end of file.

012345
123456
234567
345678
456789
EOF

5.1 (5 pt) What is the output of this program? Please explain the reason. Assume that there

is no runtime error.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char** argv)
char buf[10];
int fd, 1i;

for (1 = 0; 1 < 5; i++) {
read (fd, buf, 4);
printf ("%c", buf[0]);

}

return 0;

fd = open("txt", O RDONLY, 0640);

Answer: 04264

04151 is also correct if ONLY the student wrote that “new line can be 2 bytes, carriage

return (CR) and line feed (LF), or “\r\n””

Explanation
New line character (\n’) takes 1 byte.

Guide for grading - no partial point; no deduction even if no explanation (except 04151)

12

5.2 (5 pt) What is the output of the following program?

#include <stdio.h>

int main(int argc, char** argv) {
char bufl[10], buf2[10];
int nl, n2;
FILE *fp = fopen ("txt", "xr");

fgets (bufl, 10, fp);

fscanf (fp, "%d", &nl);

fgets (buf2, 10, fp):

fclose (fp);

fp = fopen("txt", "r");

fscanf (fp, "%d", &n2);

printf ("$s%d%s%d\n", bufl, nl, buf2, n2);

return O;

Answer:
012345
123456
12345

The answer should be written in 3 lines
“012345\n123456\n12345\n” is also correct (it needs 3 new line characters)

Explanation

There are 4 read operations.

1st read: buf1 = “012345\n”. buf1 contains one line.

2nd read: n1 = 123456. File pointer is now the end of the 2nd line (\n’).
3rd read: buf2 = “\n”. fgets() reads the remaining part of the 2nd line.

4th read: n2 = 12345. fp is closed and reopened, so n2 stores 012345 in “integer”.

Guide for grading - give 1 point for followings:
- 1stline starts with 012345
- 2nd line starts with 123456
- the last line ends with 12345 (or 12345\n)

13

5.3 (5 pt) Following is man page of 1seek ().

NAME
Iseek - reposition read/write file offset

SYNOPSIS
#include <unistd.h>
off t lseek(int fd, off t offset, int whence) ;

DESCRIPTION
Iseek() repositions the file offset of the open file description
associated with the file descriptor fd to the argument offset
according to the directive whence as follows:

SEEK_SET
The file offset is set to offset bytes.

SEEK_CUR
The file offset is set to its current location plus offset
bytes.

SEEK_END
The file offset is set to the size of the file plus offset
bytes.

Iseek() allows the file offset to be set beyond the end of the
file. If data is later written at this point, subsequent reads of
the data in the gap (a "hole") return null bytes (\0') until
data is actually written into the gap.

The following program creates a file “txt2”. Then, it writes some characters to “ixt2”. When
the program writes the characters to “ixt2” file, it sets the current offset using 1seek ().
What is the content of “txt2” after executing the program? Assume that “ixt2” did not
exist at the beginning.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char** argv) {
char buf[1024];
FILE *fp = fopen("txt", "r");
int fd2 = creat ("txt2", 0640); // create txt2

for (int 1 = 1; 1 <= 2; 1i++) {
fgets (buf, 1024, fp); // read content of txt
lseek (fd2, i, SEEK END);
write (fd2, buf, 1i);

}

14

lseek (fd2, 0, SEEK SET);

for (int i = 1; i <= 2; i++) {
fgets (buf, 1024, fp);
write (fd2, buf, 1i);
lseek(fd2, 1, SEEK CUR);

}

return O;

Answer: 203412

Explanation

After the first loop, txt2 becomes “H 0 HH 1 2” (H means “hole”).

After the second loop, txt2 becomes 203 41 2.

Guide for grading - give 1 point for followings:
- the answer has 6 digits
- 2nd, 5th, 6th digits are 0, 1,2, respectively.

15

6.

Student ID: Name:

(20 pt) Process
6.1 (5 pt) What is the output of the following program? If there are more than one possible
output, write all of them.

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char** argv) ({
int num = 0O;
pid t pid;

for (int i = 0; i < 3; i++) {
if ((pid fork()) == 0) {
num++;

1
else {
waitpid(pid, NULL, O0);
printf ("%d", num);
return 0;
}
}

return O;

Answer: 210

Explanation

Let a process P1 forks to make child P2, P2 makes P3, and P3 makes P4. The value of
‘num” in P1, P2, P3, P4is 0, 1, 2, 3, respectively.

1) P4 does not print anything and just return O

2) P3 waits P4 and prints 2

3) P2 waits P3 and prints 1

4) P1 waits P2 and prints 0

Grandchildren are not children.

Guide for grading - no partial point; If the answer contains multiple outputs, no point

16

6.2 (5 pt) The following ‘p.c’ implements redirection. Fill in the blanks so that a command “./p

[somepgm] [file1] [file2]” runs “[somepgm] < [file1] > [file2]". You can write the answer in
multiple lines.

// p.c

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char** argv) ({
pid t pid;
if (argc < 4) return 0;

pid = fork();

if (pid == 0) {
/* in child */
int f£dl, £d2;

fdl = open/(A , O RDONLY, 0640);
fd2 = creat(B , 0640);
C

close (fdl) ;
close (£d2) ;

char *argv new[] = {argv[1l], NULL};
execvp(argv[l], argv_new);
fprintf (stderr, "exec failed\n");
return -1;

1

/* in parent */

pid = wait (NULL) ;

return 0;

A:

B:

C:

Answer

A:argv[2] B:argv[3] C: close(0); close(1); dup(fd1); dup(fd2);

For A and B, “[file1]” and “[file2]” is also correct (both [] and “ are needed).
For C, there are multiple answers like followings:

fclose(stdin); fclose(stdout); dup(fd1); dup(fd2);

dup2(fd1, 0); dup2(fd2, 1);
fd1 must be duplicated to fd 0, and fd2 be 1.

Guide for grading - give 1/1/3 points for each black.

17

6.3 (10 pt) Refer to the following p1.c and p2.c. Assume that there are two programs, p1

(executable program of p1.c) and p2 (executable program of p2.c) in the same directory.

How many ‘A’s would be printed if we run p1 with argument “4” (i.e. “. /p1 47)?

// pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char** argv) {
int n = atoi(argv([1l]); // convert argument into integer
if (n <1 || n > 9) return 0;
char buf[2] = {'0', '"\0'};
if (fork() == 0) {
buf[0] = buf[0]+(n-1); // buf[0] becomes digit ‘(n-1)’

}

else if (n >= 2) {
buf[0] = buf[0]+(n-2);

}

char *argv new[] = {"./p2", buf, NULL};
execvp ("./p2", argv_new);
return 0;

// p2.c

#include <stdio.h>
#include <unistd.h>

int main(int argc, char** argv) {
fprintf (stderr, "A\n");

fork () ;
char *argv new[] = {"./pl", argv[1l], NULL};
execvp ("./pl", argv_new);

return O;

}

Answer: 50

Explanation

Let A(n) be the number of printed ‘A’'s when running “./p1 n”.
A0)=0

A(1) = 2 (Both parent and child execute “./p2 0”)

When n >= 2,

A(n) = (1 + 2*A(n-1)) + (1 + 2*A(n-2)) = 2*(1 + A(n-1) + A(n-2))
Thus, A(2) =6, A(3) =18, A(4) =50

Guide for grading - give 3 points for 34 (1 error that A(1) = 1)

18

Student ID: Name:

7. (10 pt) Signal
7.1 (4 pt) Explain the sequence of events when a user types Ctr1-C in a Unix-based
system. Your explanation should cover the following:

e \What signal is generated.
e The role of the operating system in handling this signal.
e The default action associated with this signal.

Answer:
When a user types Ctrl-C, the following sequence of events occurs:

e The keystroke generates an interrupt.

e The operating system handles this interrupt by sending a SIGINT signal to the
application process running in the foreground.
e The default action associated with the SIGINT signal is to terminate the process.

grading criteria
e \What signal is generated. (+1)

e The role of the operating system in handling this signal. (+1)
e The default action associated with this signal. (+2)

7.2 (2 pt) Explain the differences between using raise () and kil1 () functions to send
signals in Unix-based systems.

Answer:
raise(): Sends a signal to the calling process itself. (+1pt)

kill(): Sends a signal to any process specified by its PID. (+1pt)

19

7.3 (4 pt) Modify the following skeleton code to block the SIGINT signal while performing a

critical section of code and then unblock it afterwards. Ensure the program handles the

SIGINT signal by printing "SIGINT received" when it is caught.

}

#include <stdio.h>
#include <signal.h>

void sigint handler (int sig) {

printf ("SIGINT received\n") ;

int main() {

sigset t set;

// Install the signal handler
// (student code here)
(A)

// Initialize the signal set
sigemptyset (&set) ;
sigaddset (&set, SIGINT) ;

// Block SIGINT
// (student code here)
(B)

// Critical section
printf ("In the critical section\n");
sleep(5); // Simulate critical section work

// Unblock SIGINT
// (student code here)
(C)

// Infinite loop to keep the program running
while (1) f{

// Waiting for signals
}

return 0;

20

Answer:

}

#include <stdio.h>
#include <signal.h>

void sigint handler (int sig) {

printf ("SIGINT received\n") ;

int main()

sigset t set;

// Install the signal handler
signal (SIGINT, sigint handler) ;

// Initialize the signal set
sigemptyset (&set) ;
sigaddset (&set, SIGINT) ;

// Block SIGINT
sigprocmask (SIG BLOCK, &set, NULL) ;

// Critical section
printf ("In the critical section\n");
sleep(5); // Simulate critical section work

// Unblock SIGINT
sigprocmask (SIG UNBLOCK, &set, NULL) ;

// Infinite loop to keep the program running

while (1) {
// Waiting for signals
}

return 0;

grading criteria
+2 for the first correct line of code
+1 for each second/third correct line of code

21

Student ID: Name:

8. (10 pt) Short answers
8.1 (2 pt) During the execution of a program, do you expect to have a higher cache miss rate
or a higher page “miss” rate (or page faults)? Please explain in one sentence.

Answer: higher cache miss rate. page granularity is much larger than a cache line.

grading criteria
- no partial point

8.2 (2 pt) Provide one similarity and one difference between exceptions and function calls.

Answer:
similarities: both result in a change of control flow.
difference: there can be many different answers.
- exceptions sometimes do not return, function calls always return.
- exceptions occur based on some events (or traps) while functions are initiated by the
programmer
- exceptions can require support from the kernel while functions are all within the user
code.

grading criteria
- similar (1pt)
- difference (1pt)
8.3 (4 pt) Page Table
(a) (1 pt) Assume that a page table entry is 4B (ignore the valid bit) and there are 16k virtual
pages. How big is the page table?
Answer: 4B x 16k = 64kB
grading criteria: no partial point
(b) (1 pt) Now assume that there are 20 processes in the system. How does the page table

size change to support 20 processes?

Answer: per-process page table size does not change (64kB) but the each process needs
its own page table —> 64kB x 20 = 1280 KB

grading criteria: no partial point.
(c) (2 pt) Page tables are often stored in memory because of their size. However, this incurs

latency overhead since all memory accesses require two accesses (one for the page table
and one for the actual data itself). To accelerate the translation, a dedicated (small)

22

hardware cache is proposed that saves recently translated information. Is this a good idea?

Why or why not?
Answer: Yes because of locality. Recently used translation will likely be used again.

grading criteria
- 1pt : if student says yes

8.4 (2 pt) Which instructions can potentially cause an exception and result in the same
instruction being re-executed?

(a) DIV (divide) (b) JE (jump) (c) MOV (d) ADD

Answer: (C) page fault caused by memory load instruction

(B) also can be an answer. When the program size is large, the operating system
loads the portion of the program on the memory, to save the memory space. So when the
program jumps to the portion of program that is not in memory, the page fault can occur.

grading criteria
- selectb, c->2pts
- selectonly b -> 2pts
- selectonly c -> 2tps
- selectb orcwithaord->1pt
- did not select b nor ¢ : Opt

23

