
‭Spring Semester 2024‬

‭KAIST EE209‬

‭Programming Structures for Electrical Engineering‬

‭Final Exam‬

‭Date: 2024.06.10‬

‭Time: 13:00 ~ 15:30‬

‭Student ID:‬

‭Name:‬

‭The exam is closed book and notes. Read the questions carefully and focus your answers‬
‭on what has been asked. You are allowed to ask the instructor/TAs for help only in‬
‭understanding the questions, in case you find them not completely clear. Be concise and‬
‭precise in your answers and state clearly any assumption you may have made. All your‬
‭answers must be included in the attached sheets. You have 150 minutes to complete your‬
‭exam. Be wise in managing your time.‬
‭Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!‬

‭1‬ ‭/15‬

‭2‬ ‭/10‬

‭3‬ ‭/10‬

‭4‬ ‭/10‬

‭5‬ ‭/15‬

‭6‬ ‭/20‬

‭7‬ ‭/10‬

‭Total‬ ‭/100‬

‭1‬

‭Student ID:‬ ‭Name:‬

‭1.‬ ‭(15 pt) Hash table‬
‭1.1 (5 pt) The code below describes the ‘hash table’ structure we learned in the lecture.‬

‭enum {BUCKET_COUNT = 1024};‬

‭struct Node {‬
‭const char *key;‬
‭int value;‬
‭struct Node *next;‬

‭};‬

‭struct Table {‬
‭struct Node *array[BUCKET_COUNT];‬

‭};‬

‭void Table_add(struct Table *t, const char *key, int value)‬
‭{‬

‭struct Node *p = (struct Node*)malloc(sizeof(struct Node));‬
‭int h = hash(key);‬
‭p->key =(const char*)malloc(strlen(key) + 1);‬
‭strcpy(p->key, key);‬
‭p->value = value;‬
‭p->next = t->array[h];‬
‭t->array[h] = p;‬

‭}‬

‭Now, implement‬‭Table_delete‬‭function when the data‬‭structure owns a copy of‬
‭the key. Hint: As we’ve learned in modularity, well-designed module manages‬
‭resource consistently (i.e., a module should free a resource if and only if the module‬
‭has allocated that resource). The function should also satisfy the below requirements:‬
‭• Return 1 if the node is successfully removed.‬
‭• Return 0 if the node with the corresponding key is not found.‬
‭• After deletion, all other nodes should remain accessible and should be in the same‬
‭order.‬
‭• Assume there are‬‭no‬‭duplicate keys‬‭.‬
‭• You may use library functions (e.g.,‬‭int strcmp(const‬‭char *string1, const‬
‭char *string2)‬‭which returns 0 when string1 is equal‬‭to string‬‭2‬‭).‬
‭• You can use‬‭hash‬‭function. But you may NOT call‬‭other hash table functions (e.g.,‬
‭Table_search‬‭).‬

‭2‬

‭int Table_delete(struct Table *t1, const char *key)‬
‭{‬

‭struct Node *p, *p_prev = NULL;‬
‭int h = hash(key);‬
‭for (p = t1->array[h]; p != NULL; p = p->next) {‬
‭Ans)‬

‭if (strcmp(key, p->key) == 0) {‬
‭if (p_prev == NULL) {‬

‭t1->array[h] = p->next;‬
‭} else {‬

‭p_prev->next = p->next;‬
‭}‬
‭free(p->key);‬
‭free(p);‬
‭return 1;‬

‭}‬
‭p_prev = p;‬

‭}‬
‭return 0;‬

‭}‬

‭grading criteria‬
‭-‬ ‭any syntax error or minor error: -0.5pts‬
‭-‬ ‭logic error‬

‭-‬ ‭does not consider when p_prev is NULL or does not consider when p_prev is‬
‭not NULL (-1pt)‬

‭-‬ ‭others (-1pt)‬
‭-‬ ‭no free(p->key): -0.5pts‬
‭-‬ ‭no free (p): -0.5pts‬
‭-‬ ‭incomplete code but writes some related functions: only 1 pt‬

‭3‬

‭1.2 (5 pt) Implement‬‭Table_subtract‬‭function, which‬‭deletes the nodes contained in‬
‭table ‘‬‭t1‬‭’ if their keys are also present in table‬‭‘‬‭t2‬‭’. The function should return the number of‬
‭nodes deleted from t1. You have to use the‬‭Table_delete‬‭function implemented earlier in‬
‭this question.‬

‭int Table_subtract(struct Table *t1, struct Table *t2)‬
‭{‬

‭struct Node *p;‬
‭int b, count = 0;‬
‭for (b = 0; b < BUCKET_COUNT; b++) {‬
‭Ans)‬

‭for (p = t2->array[b]; p != NULL; p = p->next;) {‬
‭count += Table_delete(t1, p->key);‬

‭}‬

‭}‬
‭return count;‬

‭}‬

‭grading criteria‬
‭-‬ ‭any syntax error or minor error: -0.5pt‬
‭-‬ ‭logic error‬

‭-‬ ‭did not use Table_delete() (-1pt)‬
‭-‬ ‭did not rotate the list of each bucket. (-1pt)‬
‭-‬ ‭others (-1pt)‬

‭-‬ ‭incomplete code but writes some related functions: only 1 pt‬

‭1.3 (5 pt) Implement‬‭Table_merge‬‭function, which adds‬‭the nodes contained in table ‘‬‭t2‬‭’‬
‭to ‘‬‭t1‬‭’ if their keys are not already present in table‬‭‘t1’. Also, the function should return the‬
‭number of nodes added to t1. You have to use‬‭Table_add‬‭and‬‭Table_search‬‭function in‬
‭this question. (Hint:‬‭Table_search‬‭function takes‬‭three parameters, (‬‭struct Table *t,‬
‭const char *key, int *value‬‭) and returns 1 if the‬‭input ‘‬‭key‬‭’‬ ‭exists in hash table‬‭t‬‭,‬
‭otherwise, it returns 0. If the ‘‬‭key‬‭’‬ ‭exists in the‬‭table ‘‬‭t‬‭’, the value of the corresponding node‬
‭is copied to the input integer pointer ‘‬‭value‬‭’.)‬

‭int Table_merge(struct Table *t1, struct Table *t2)‬
‭{‬

‭struct Node *p;‬
‭int b, value, count = 0;‬
‭for (b = 0; b < BUCKET_COUNT; b++) {‬
‭Ans)‬

‭4‬

‭for (p = t2->array[b]; p != NULL; p = p->next;) {‬
‭if (Table_search(t1, p->key, &value) == 0) {‬

‭Table_add(t1, p->key, p->value);‬
‭count++;‬

‭}‬
‭}‬

‭}‬
‭return count;‬

‭}‬

‭grading criteria‬
‭-‬ ‭any syntax error or minor error: -0.5pts‬
‭-‬ ‭logic error‬

‭-‬ ‭did not use table_search or table_add (-1pt)‬
‭-‬ ‭did not rotate the list of each bucket (-1pt)‬

‭-‬ ‭incomplete code but writes some related functions: only 1 pt‬

‭5‬

‭Student ID:‬ ‭Name:‬

‭2.‬ ‭(10 pt) Assembly‬
‭2.1 (5 pt) Given the following assembly code, re-construct the C code that produced it.‬

‭.section .rodata‬
‭.LC1:‬

‭.string "%lu\n"‬

‭mystery1:‬
‭0x00400566 <+0>: cmp $0, %rsi‬
‭0x00400569 <+3>: jle 0x400599 <mystery1+51>‬
‭0x0040056b <+5>: push %rbp‬
‭0x0040056c <+6>: push %rbx‬
‭0x0040056d <+7>: sub $0x8, %rsp‬
‭0x00400571 <+11>: mov %rsi, %rbx‬
‭0x00400574 <+14>: mov %rdi, %rbp‬
‭0x00400577 <+17>: sarl $1, %rbx‬
‭0x0040057a <+20>: callq 0x400566 <mystery1>‬
‭0x0040057f <+25>: mov -0x8(%rbp, %rbx, 8), %rsi‬
‭0x00400584 <+30>: mov $.LC1, %edi‬
‭0x00400589 <+35>: mov %0x0, %eax‬
‭0x0040058e <+40>: callq 0x400430 <printf>‬
‭0x00400593 <+45>: add $0x8, %rsp‬
‭0x00400597 <+49>: pop %rbx‬
‭0x00400598 <+50>: pop %rbp‬
‭0x00400599 <+51>: ret‬

‭void mystery1(long *arr, size_t count) {‬
‭if (___________________) { // line 1‬

‭___________________; // line 2‬
‭printf("%lu\n",‬‭arr[count - 1]‬‭); // line‬‭3‬

‭}‬
‭}‬

‭Answer:‬

‭void mystery1(long *arr, size_t count) {‬
‭if (‬ ‭count > 0‬ ‭) { //‬‭line 1‬

‭mystery1(arr, count / 2)‬‭;‬ ‭// line‬‭2‬
‭printf("%lu\n",‬ ‭arr[count - 1]‬‭); //‬‭line 3‬

‭}‬
‭}‬

‭6‬

‭grading criteria‬
‭wrong answer → -2 (all wrong answer → get 0 in total)‬
‭wrong answer in right form, ex) mystery1(arr, count) → -1‬

‭2.2 (5 pt) Given the following assembly code, re-construct the C code that produced it.‬

‭int mystery2(char *param1, int *param2, int param3) {‬
‭int local = strlen(param1); // line 1‬
‭for (int i = rand(); i < 0 ; i += 4) { // line 2‬

‭*param2 -= i; // line 3‬
‭local = 5*local + 14; // line 4‬

‭}‬
‭return -mystery2(NULL,&local,param2[1]*param3); // line 5‬

‭}‬

‭mystery2:‬
‭push %rbp‬
‭push %rbx‬
‭sub $0x18,%rsp‬
‭mov %rsi,%rbx‬
‭mov %edx,%ebp‬
‭callq <strlen>‬
‭mov %eax,0xc(%rsp)‬
‭callq <rand>‬
‭jmp .L2‬

‭.L1:‬

‭sub %eax,‬ ‭(a)‬ ‭d‬

‭mov 0xc(%rsp),%ecx‬
‭lea 0xe(%rcx,%rcx,4),%ecx‬
‭mov %ecx,0xc(%rsp)‬

‭(b)‬ ‭d‬

‭.L2:‬

‭(c)‬ ‭d‬

‭jl .L1‬
‭mov %ebp,%edx‬
‭imul 0x4(%rbx),%edx‬
‭lea 0xc(%rsp),%rsi‬
‭mov 0x0,%edi‬
‭callq <mystery2>‬
‭neg eax‬
‭add 0x18,%rsp‬
‭pop rbx‬
‭pop rbp‬
‭ret‬

‭7‬

‭Answer‬

‭(a) :‬‭(%rbx)‬ ‭, (b):‬‭add $0x4,%eax‬ ‭, (c) :‬‭cmp‬ ‭$0,%eax‬

‭mystery2:‬
‭push %rbp‬
‭push %rbx‬
‭sub $0x18,%rsp‬
‭mov %rsi,%rbx‬
‭mov %edx,%ebp‬
‭callq <strlen>‬
‭mov %eax,0xc(%rsp)‬
‭callq <rand>‬
‭jmp .L2‬

‭.L1:‬
‭sub %eax,‬‭(%rbx)‬
‭mov 0xc(%rsp),%ecx‬
‭lea 0xe(%rcx,%rcx,4),%ecx‬
‭mov %ecx,0xc(%rsp)‬
‭add $0x4,%eax‬

‭.L2:‬
‭cmp $0,%eax‬
‭jl .L1‬
‭mov %ebp,%edx‬
‭imul 0x4(%rbx),%edx‬
‭lea 0xc(%rsp),%rsi‬
‭mov 0x0,%edi‬
‭callq <mystery2>‬
‭neg eax‬
‭add 0x18,%rsp‬
‭pop rbx‬
‭pop rbp‬
‭ret‬

‭grading criteria‬
‭Only give the points with exact answers‬

‭(a)‬ ‭2‬
‭(b)‬ ‭2‬
‭(c)‬ ‭1‬

‭8‬

‭Student ID:‬ ‭Name:‬

‭3.‬ ‭(10 pt) Exception‬
‭3.1 (2 pt) There are two types of exception: trap and interrupt. Which exception type‬
‭corresponds to (a) and (b)?‬
‭(a) occurs when a user presses a key on the keyboard.‬
‭(b) occurs when program requests heap memory.‬

‭Answer: (a):interrupt, (b): trap‬
‭Guide for grading - 1 points for each exception type‬

‭3.2 (2 pt) Following code denotes the situation where the exception handler kills the‬
‭application when the exception occurs. Among the following, select the exception(s)‬
‭corresponding to the case of the following code.‬

‭int *ptr;‬
‭ptr = 0;‬
‭*ptr = 1;‬

‭1.‬ ‭segmentation fault‬
‭2.‬ ‭IO completion‬
‭3.‬ ‭system call‬
‭4.‬ ‭divide-by-zero‬

‭Answer: 1‬
‭1 and 4 are fault.‬
‭2 is interrupt. 3 is trap.‬

‭3.3 (6 pt) When the user program calls a system call, the trap instruction is executed and the‬
‭execution mode changes from the user mode to the kernel mode. It is called “mode switch”.‬
‭When the OS switches the CPU from one program to another, the OS saves the registers of‬
‭the old process and loads the register values for the new program. Please specify whether‬
‭the following situation corresponds to mode switch, context switch or both.‬

‭a)‬ ‭privilege level changes (2pt):‬‭mode switch.‬
‭b)‬ ‭current address map (page table) changes (2pt):‬‭context‬‭switch‬
‭c)‬ ‭current register values are saved (2pt):‬‭both‬

‭Explanation‬
‭a)‬ ‭The privilege level changes when changing from user mode to kernel mode.‬

‭During context switch, one process in kernel model is changed to another process in‬
‭kernel mode, so the privilege level does not change.‬

‭9‬

‭b)‬ ‭A process has a single page table. The page table of a process contains address‬
‭maps of both user mode and kernel mode. So the page table does not changes‬
‭during mode switch.‬
‭In case of context switch, the process is changed so the page table is also changed.‬

‭c)‬ ‭During mode switch, a process in user mode saves its register values to the kernel‬
‭stack and turns into the kernel mode.‬
‭During context switch, one process in kernel mode saves its register values in the‬
‭memory and is switched to other process.‬

‭10‬

‭Student ID:‬ ‭Name:‬

‭4.‬ ‭(10 pt) Memory Allocation‬
‭4.1 (3 pt) Consider the list of free memory chunks below. Show the free memory chunks‬
‭after “allocate (64)” using “first-fit”.‬

‭48->32->64->64->256‬

‭4.2 (3 pt) Consider the list of free memory chunks below. Show the free memory list after‬
‭“allocate (64)” using “best-fit”.‬

‭48->32->128->256‬

‭4.3 (4 pt) Consider the following code. If you run this code, what is going to happen? Is it‬
‭going to run forever? Or is the operating system going to kill the program at some point? To‬
‭get the full credit, provide detailed reasoning.‬

‭#include <stdio.h>‬
‭#include <stdlib.h>‬

‭int main(){‬
‭while (1) {‬

‭malloc (0) ;‬
‭}‬
‭return 0;‬

‭}‬

‭answer:‬
‭malloc (0) allocates a minimal allocation unit of memory. Thus, the memory is exhausted at‬
‭the end. This results in the corresponding process to be killed or crashed. .‬

‭11‬

‭grading criteria‬
‭- correct answer without detailed reasoning. 2pt‬

‭Student ID:‬ ‭Name:‬

‭5.‬ ‭(15 pt) IO‬
‭Consider the following text file “txt”. It contains 5 lines of string written in text editor (vi,‬
‭emacs, nano). EOF means end of file.‬

‭012345‬
‭123456‬
‭234567‬
‭345678‬
‭456789‬
‭EOF‬

‭5.1 (5 pt) What is the output of this program? Please explain the reason. Assume that there‬
‭is no runtime error.‬

‭#include <stdio.h>‬
‭#include <fcntl.h>‬
‭#include <unistd.h>‬

‭int main(int argc, char** argv) {‬
‭char buf[10];‬
‭int fd, i;‬
‭fd = open("txt", O_RDONLY, 0640);‬

‭for (i = 0; i < 5; i++) {‬
‭read(fd, buf, 4);‬
‭printf("%c", buf[0]);‬

‭}‬
‭return 0;‬

‭}‬

‭Answer: 04264‬
‭04151 is also correct if ONLY the student wrote that “new line can be 2 bytes,‬‭carriage‬
‭return (CR)‬‭and‬‭line feed (LF),‬‭or‬‭“\r\n”‬‭”‬

‭Explanation‬
‭New line character (‘\n’) takes 1 byte.‬

‭Guide for grading - no partial point; no deduction even if no explanation (except 04151)‬

‭12‬

‭5.2 (5 pt) What is the output of the following program?‬

‭#include <stdio.h>‬

‭int main(int argc, char** argv) {‬
‭char buf1[10], buf2[10];‬
‭int n1, n2;‬
‭FILE *fp = fopen("txt", "r");‬

‭fgets(buf1, 10, fp);‬
‭fscanf(fp, "%d", &n1);‬
‭fgets(buf2, 10, fp);‬
‭fclose(fp);‬
‭fp = fopen("txt", "r");‬
‭fscanf(fp, "%d", &n2);‬
‭printf("%s%d%s%d\n", buf1, n1, buf2, n2);‬

‭return 0;‬
‭}‬

‭Answer:‬
‭012345‬
‭123456‬
‭12345‬

‭The answer should be written in 3 lines‬
‭“012345\n123456\n12345\n” is also correct (it needs 3 new line characters)‬

‭Explanation‬
‭There are 4 read operations.‬
‭1st read: buf1 = “012345\n”. buf1 contains one line.‬
‭2nd read: n1 = 123456. File pointer is now the end of the 2nd line (‘\n’).‬
‭3rd read: buf2 = “\n”. fgets() reads the remaining part of the 2nd line.‬
‭4th read: n2 = 12345. fp is closed and reopened, so n2 stores 012345 in “integer”.‬

‭Guide for grading - give 1 point for followings:‬
‭-‬ ‭1st line starts with 012345‬
‭-‬ ‭2nd line starts with 123456‬
‭-‬ ‭the last line ends with 12345 (or 12345\n)‬

‭13‬

‭5.3 (5 pt) Following is‬‭man‬‭page of‬‭lseek()‬‭.‬

‭NAME‬
‭lseek - reposition read/write file offset‬

‭SYNOPSIS‬
‭#include <unistd.h>‬
‭off_t lseek(int‬‭fd‬‭, off_t‬‭offset‬‭, int‬‭whence‬‭);‬

‭DESCRIPTION‬
‭lseek‬‭() repositions the file offset of the‬‭open file description‬
‭associated with the file descriptor‬‭fd‬‭to the‬‭argument‬‭offset‬
‭according to the directive‬‭whence‬‭as follows:‬

‭SEEK_SET‬
‭The file offset is set to‬‭offset‬‭bytes.‬

‭SEEK_CUR‬
‭The file offset is set to its current location plus‬‭offset‬
‭bytes.‬

‭SEEK_END‬
‭The file offset is set to the size of the file plus‬‭offset‬
‭bytes.‬

‭lseek‬‭() allows the file offset to be set beyond‬‭the end of the‬
‭file. If data is later written at this point, subsequent reads of‬
‭the data in the gap (a "hole") return null bytes ('\0') until‬
‭data is actually written into the gap.‬

‭The following program creates a file “txt2”. Then, it writes some characters to “txt2”. When‬
‭the program writes the characters to “txt2” file, it sets the current offset using‬‭lseek()‬‭.‬
‭What is the content of “txt2” after executing the program?‬‭Assume that “txt2” did not‬
‭exist at the beginning.‬

‭#include <stdio.h>‬
‭#include <stdlib.h>‬
‭#include <fcntl.h>‬
‭#include <unistd.h>‬

‭int main(int argc, char** argv) {‬
‭char buf[1024];‬
‭FILE *fp = fopen("txt", "r");‬
‭int fd2 = creat("txt2", 0640); // create txt2‬

‭for (int i = 1; i <= 2; i++) {‬
‭fgets(buf, 1024, fp); // read content of txt‬
‭lseek(fd2, i, SEEK_END);‬
‭write(fd2, buf, i);‬

‭}‬

‭14‬

‭lseek(fd2, 0, SEEK_SET);‬

‭for (int i = 1; i <= 2; i++) {‬
‭fgets(buf, 1024, fp);‬
‭write(fd2, buf, i);‬
‭lseek(fd2, i, SEEK_CUR);‬

‭}‬

‭return 0;‬
‭}‬

‭Answer: 203412‬

‭Explanation‬
‭After the first loop, txt2 becomes “H‬‭0‬‭H H‬‭1 2‬‭” (H‬‭means “hole”).‬
‭After the second loop, txt2 becomes “‬‭2 0 3 4 1 2‬‭”.‬

‭Guide for grading - give 1 point for followings:‬
‭-‬ ‭the answer has 6 digits‬
‭-‬ ‭2nd, 5th, 6th digits are 0, 1 ,2, respectively.‬

‭15‬

‭Student ID:‬ ‭Name:‬

‭6.‬ ‭(20 pt) Process‬
‭6.1 (5 pt) What is the output of the following program? If there are more than one possible‬
‭output, write all of them.‬

‭#include <stdio.h>‬
‭#include <unistd.h>‬
‭#include <sys/wait.h>‬

‭int main(int argc, char** argv) {‬
‭int num = 0;‬
‭pid_t pid;‬

‭for (int i = 0; i < 3; i++) {‬
‭if ((pid = fork()) == 0) {‬

‭num++;‬
‭}‬
‭else {‬

‭waitpid(pid, NULL, 0);‬
‭printf("%d", num);‬
‭return 0;‬

‭}‬
‭}‬
‭return 0;‬

‭}‬

‭Answer: 210‬

‭Explanation‬
‭Let a process P1 forks to make child P2, P2 makes P3, and P3 makes P4. The value of‬
‭“num” in P1, P2, P3, P4 is 0, 1, 2, 3, respectively.‬
‭1) P4 does not print anything and just return 0‬
‭2) P3 waits P4 and prints 2‬
‭3) P2 waits P3 and prints 1‬
‭4) P1 waits P2 and prints 0‬
‭Grandchildren are not children.‬

‭Guide for grading - no partial point; If the answer contains multiple outputs, no point‬

‭16‬

‭6.2 (5 pt) The following ‘p.c’ implements redirection. Fill in the blanks so that a command “./p‬
‭[somepgm] [file1] [file2]” runs “[somepgm] < [file1] > [file2]”. You can write the answer in‬
‭multiple lines.‬

‭// p.c‬

‭#include <stdio.h>‬
‭#include <fcntl.h>‬
‭#include <unistd.h>‬
‭#include <sys/wait.h>‬

‭int main(int argc, char** argv) {‬
‭pid_t pid;‬
‭if (argc < 4) return 0;‬

‭pid = fork();‬
‭if (pid == 0) {‬

‭/* in child */‬
‭int fd1, fd2;‬
‭fd1 = open(‬ ‭A‬ ‭, O_RDONLY, 0640);‬
‭fd2 = creat(‬ ‭B‬ ‭, 0640);‬

‭C‬

‭close(fd1);‬
‭close(fd2);‬

‭char *argv_new[] = {argv[1], NULL};‬
‭execvp(argv[1], argv_new);‬
‭fprintf(stderr, "exec failed\n");‬
‭return -1;‬

‭}‬
‭/* in parent */‬
‭pid = wait(NULL);‬
‭return 0;‬

‭}‬

‭A:‬
‭B:‬
‭C:‬
‭Answer‬
‭A: argv[2] B: argv[3] C: close(0); close(1); dup(fd1); dup(fd2);‬

‭For A and B, “[file1]” and “[file2]” is also correct (both [] and “ are needed).‬
‭For C, there are multiple answers like followings:‬

‭fclose(stdin); fclose(stdout); dup(fd1); dup(fd2);‬
‭dup2(fd1, 0); dup2(fd2, 1);‬

‭fd1 must be duplicated to fd 0, and fd2 be 1.‬

‭Guide for grading - give 1/1/3 points for each black.‬

‭17‬

‭6.3 (10 pt) Refer to the following p1.c and p2.c. Assume that there are two programs, p1‬
‭(executable program of p1.c) and p2 (executable program of p2.c) in the same directory.‬
‭How many ‘A’s would be printed if we run p1 with argument “4” (i.e. “‬‭./p1 4‬‭”)?‬

‭// p1.c‬

‭#include <stdio.h>‬
‭#include <stdlib.h>‬
‭#include <unistd.h>‬

‭int main(int argc, char** argv) {‬
‭int n = atoi(argv[1]); // convert argument into integer‬
‭if (n < 1 || n > 9) return 0;‬

‭char buf[2] = {'0', '\0'};‬

‭if (fork() == 0) {‬
‭buf[0] = buf[0]+(n-1); // buf[0] becomes digit ‘(n-1)’‬

‭}‬
‭else if (n >= 2) {‬

‭buf[0] = buf[0]+(n-2);‬
‭}‬

‭char *argv_new[] = {"./p2", buf, NULL};‬
‭execvp("./p2", argv_new);‬
‭return 0;‬

‭}‬

‭// p2.c‬

‭#include <stdio.h>‬
‭#include <unistd.h>‬

‭int main(int argc, char** argv) {‬
‭fprintf(stderr, "A\n");‬
‭fork();‬

‭char *argv_new[] = {"./p1", argv[1], NULL};‬
‭execvp("./p1", argv_new);‬
‭return 0;‬

‭}‬

‭Answer: 50‬
‭Explanation‬
‭Let A(n) be the number of printed ‘A’s when running “./p1 n”.‬
‭A(0) = 0‬
‭A(1) = 2 (Both parent and child execute “./p2 0”)‬
‭When n >= 2,‬
‭A(n) = (1 + 2*A(n-1)) + (1 + 2*A(n-2)) = 2*(1 + A(n-1) + A(n-2))‬
‭Thus, A(2) = 6, A(3) = 18, A(4) = 50‬

‭Guide for grading - give 3 points for 34 (1 error that A(1) = 1)‬

‭18‬

‭Student ID:‬ ‭Name:‬

‭7.‬ ‭(10 pt) Signal‬
‭7.1 (4 pt) Explain the sequence of events when a user types‬‭Ctrl-C‬‭in a Unix-based‬
‭system. Your explanation should cover the following:‬

‭●‬ ‭What signal is generated.‬
‭●‬ ‭The role of the operating system in handling this signal.‬
‭●‬ ‭The default action associated with this signal.‬

‭Answer:‬

‭When a user types‬‭Ctrl-C‬‭, the following sequence of‬‭events occurs:‬

‭●‬ ‭The keystroke generates an interrupt.‬
‭●‬ ‭The operating system handles this interrupt by sending a‬‭SIGINT‬‭signal to the‬

‭application process running in the foreground.‬
‭●‬ ‭The default action associated with the‬‭SIGINT‬‭signal‬‭is to terminate the process.‬

‭grading criteria‬

‭●‬ ‭What signal is generated. (+1)‬
‭●‬ ‭The role of the operating system in handling this signal. (+1)‬
‭●‬ ‭The default action associated with this signal. (+2)‬

‭7.2 (2 pt) Explain the differences between using‬‭raise()‬‭and‬‭kill()‬‭functions to send‬
‭signals in Unix-based systems.‬

‭Answer:‬

‭raise()‬‭: Sends a signal to the calling process itself.‬‭(+1pt)‬

‭kill()‬‭: Sends a signal to any process specified by‬‭its PID. (+1pt)‬

‭19‬

‭7.3 (4 pt) Modify the following skeleton code to block the‬‭SIGINT‬‭signal while performing a‬
‭critical section of code and then unblock it afterwards. Ensure the program handles the‬
‭SIGINT‬‭signal by printing "SIGINT received" when it‬‭is caught.‬

‭#include <stdio.h>‬
‭#include <signal.h>‬

‭void sigint_handler(int sig) {‬
‭printf("SIGINT received\n");‬

‭}‬

‭int main() {‬
‭sigset_t set;‬

‭// Install the signal handler‬
‭// (student code here)‬
‭____________(A)_____________‬

‭// Initialize the signal set‬
‭sigemptyset(&set);‬
‭sigaddset(&set, SIGINT);‬

‭// Block SIGINT‬
‭// (student code here)‬
‭____________(B)_____________‬

‭// Critical section‬
‭printf("In the critical section\n");‬
‭sleep(5); // Simulate critical section work‬

‭// Unblock SIGINT‬
‭// (student code here)‬
‭____________(C)_____________‬

‭// Infinite loop to keep the program running‬
‭while (1) {‬

‭// Waiting for signals‬
‭}‬

‭return 0;‬
‭}‬

‭20‬

‭Answer:‬

‭#include <stdio.h>‬
‭#include <signal.h>‬

‭void sigint_handler(int sig) {‬
‭printf("SIGINT received\n");‬

‭}‬

‭int main() {‬
‭sigset_t set;‬

‭// Install the signal handler‬
‭signal(SIGINT, sigint_handler);‬

‭// Initialize the signal set‬
‭sigemptyset(&set);‬
‭sigaddset(&set, SIGINT);‬

‭// Block SIGINT‬
‭sigprocmask(SIG_BLOCK, &set, NULL);‬

‭// Critical section‬
‭printf("In the critical section\n");‬
‭sleep(5); // Simulate critical section work‬

‭// Unblock SIGINT‬
‭sigprocmask(SIG_UNBLOCK, &set, NULL);‬

‭// Infinite loop to keep the program running‬
‭while (1) {‬

‭// Waiting for signals‬
‭}‬

‭return 0;‬
‭}‬

‭grading criteria‬
‭+2 for the first correct line of code‬
‭+1 for each second/third correct line of code‬

‭21‬

‭Student ID:‬ ‭Name:‬

‭8. (10 pt) Short answers‬
‭8.1 (2 pt) During the execution of a program, do you expect to have a higher cache miss rate‬
‭or a higher page “miss” rate (or page faults)? Please explain in one sentence.‬

‭Answer: higher cache miss rate. page granularity is much larger than a cache line.‬

‭grading criteria‬
‭-‬ ‭no partial point‬

‭8.2 (2 pt) Provide one similarity and one difference between exceptions and function calls.‬

‭Answer:‬
‭similarities: both result in a change of control flow.‬
‭difference: there can be many different answers.‬

‭-‬ ‭exceptions sometimes do not return, function calls always return.‬
‭-‬ ‭exceptions occur based on some events (or traps) while functions are initiated by the‬

‭programmer‬
‭-‬ ‭exceptions can require support from the kernel while functions are all within the user‬

‭code.‬

‭grading criteria‬
‭-‬ ‭similar (1pt)‬
‭-‬ ‭difference (1pt)‬

‭8.3 (4 pt) Page Table‬
‭(a) (1 pt) Assume that a page table entry is 4B (ignore the valid bit) and there are 16k virtual‬
‭pages. How big is the page table?‬

‭Answer: 4B x 16k = 64kB‬

‭grading criteria: no partial point‬

‭(b) (1 pt) Now assume that there are 20 processes in the system. How does the page table‬
‭size change to support 20 processes?‬

‭Answer: per-process page table size does not change (64kB) but the each process needs‬
‭its own page table —> 64kB x 20 = 1280 KB‬

‭grading criteria: no partial point.‬

‭(c) (2 pt) Page tables are often stored in memory because of their size. However, this incurs‬
‭latency overhead since all memory accesses require two accesses (one for the page table‬
‭and one for the actual data itself). To accelerate the translation, a dedicated (small)‬

‭22‬

‭hardware cache is proposed that saves recently translated information. Is this a good idea?‬
‭Why or why not?‬

‭Answer: Yes because of locality. Recently used translation will likely be used again.‬

‭grading criteria‬
‭- 1pt : if student says yes‬

‭8.4 (2 pt)‬‭Which instructions can potentially cause‬‭an exception and result in the same‬
‭instruction being re-executed?‬

‭(a)‬ ‭DIV (divide) (b) JE (jump) (c) MOV (d) ADD‬

‭Answer: (C) page fault caused by memory load instruction‬
‭(B) also can be an answer. When the program size is large, the operating system‬

‭loads the portion of the program on the memory, to save the memory space. So when the‬
‭program jumps to the portion of program that is not in memory, the page fault can occur.‬

‭grading criteria‬
‭-‬ ‭select b, c -> 2pts‬
‭-‬ ‭select only b -> 2pts‬
‭-‬ ‭select only c -> 2tps‬
‭-‬ ‭select b or c with a or d -> 1pt‬
‭-‬ ‭did not select b nor c : 0pt‬

‭23‬

