
 Spring Semester 2024

 KAIST EE209

 Programming Structures for Electrical Engineering

 Final Exam

 Date: 2024.06.10

 Time: 13:00 ~ 15:30

 Student ID:

 Name:

 The exam is closed book and notes. Read the questions carefully and focus your answers
 on what has been asked. You are allowed to ask the instructor/TAs for help only in
 understanding the questions, in case you find them not completely clear. Be concise and
 precise in your answers and state clearly any assumption you may have made. All your
 answers must be included in the attached sheets. You have 150 minutes to complete your
 exam. Be wise in managing your time.
 Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

 1 /15

 2 /10

 3 /10

 4 /10

 5 /15

 6 /20

 7 /10

 Total /100

 1

 Student ID: Name:

 1. (15 pt) Hash table
 1.1 (5 pt) The code below describes the ‘hash table’ structure we learned in the lecture.

 enum {BUCKET_COUNT = 1024};

 struct Node {
 const char *key;
 int value;
 struct Node *next;

 };

 struct Table {
 struct Node *array[BUCKET_COUNT];

 };

 void Table_add(struct Table *t, const char *key, int value)
 {

 struct Node *p = (struct Node*)malloc(sizeof(struct Node));
 int h = hash(key);
 p->key =(const char*)malloc(strlen(key) + 1);
 strcpy(p->key, key);
 p->value = value;
 p->next = t->array[h];
 t->array[h] = p;

 }

 Now, implement Table_delete function when the data structure owns a copy of
 the key. Hint: As we’ve learned in modularity, well-designed module manages
 resource consistently (i.e., a module should free a resource if and only if the module
 has allocated that resource). The function should also satisfy the below requirements:
 • Return 1 if the node is successfully removed.
 • Return 0 if the node with the corresponding key is not found.
 • After deletion, all other nodes should remain accessible and should be in the same
 order.
 • Assume there are no duplicate keys .
 • You may use library functions (e.g., int strcmp(const char *string1, const
 char *string2) which returns 0 when string1 is equal to string 2).
 • You can use hash function. But you may NOT call other hash table functions (e.g.,
 Table_search).

 2

 int Table_delete(struct Table *t1, const char *key)
 {

 struct Node *p, *p_prev = NULL;
 int h = hash(key);
 for (p = t1->array[h]; p != NULL; p = p->next) {
 Ans)

 if (strcmp(key, p->key) == 0) {
 if (p_prev == NULL) {

 t1->array[h] = p->next;
 } else {

 p_prev->next = p->next;
 }
 free(p->key);
 free(p);
 return 1;

 }
 p_prev = p;

 }
 return 0;

 }

 grading criteria
 - any syntax error or minor error: -0.5pts
 - logic error

 - does not consider when p_prev is NULL or does not consider when p_prev is
 not NULL (-1pt)

 - others (-1pt)
 - no free(p->key): -0.5pts
 - no free (p): -0.5pts
 - incomplete code but writes some related functions: only 1 pt

 3

 1.2 (5 pt) Implement Table_subtract function, which deletes the nodes contained in
 table ‘ t1 ’ if their keys are also present in table ‘ t2 ’. The function should return the number of
 nodes deleted from t1. You have to use the Table_delete function implemented earlier in
 this question.

 int Table_subtract(struct Table *t1, struct Table *t2)
 {

 struct Node *p;
 int b, count = 0;
 for (b = 0; b < BUCKET_COUNT; b++) {
 Ans)

 for (p = t2->array[b]; p != NULL; p = p->next;) {
 count += Table_delete(t1, p->key);

 }

 }
 return count;

 }

 grading criteria
 - any syntax error or minor error: -0.5pt
 - logic error

 - did not use Table_delete() (-1pt)
 - did not rotate the list of each bucket. (-1pt)
 - others (-1pt)

 - incomplete code but writes some related functions: only 1 pt

 1.3 (5 pt) Implement Table_merge function, which adds the nodes contained in table ‘ t2 ’
 to ‘ t1 ’ if their keys are not already present in table ‘t1’. Also, the function should return the
 number of nodes added to t1. You have to use Table_add and Table_search function in
 this question. (Hint: Table_search function takes three parameters, (struct Table *t,
 const char *key, int *value) and returns 1 if the input ‘ key ’ exists in hash table t ,
 otherwise, it returns 0. If the ‘ key ’ exists in the table ‘ t ’, the value of the corresponding node
 is copied to the input integer pointer ‘ value ’.)

 int Table_merge(struct Table *t1, struct Table *t2)
 {

 struct Node *p;
 int b, value, count = 0;
 for (b = 0; b < BUCKET_COUNT; b++) {
 Ans)

 4

 for (p = t2->array[b]; p != NULL; p = p->next;) {
 if (Table_search(t1, p->key, &value) == 0) {

 Table_add(t1, p->key, p->value);
 count++;

 }
 }

 }
 return count;

 }

 grading criteria
 - any syntax error or minor error: -0.5pts
 - logic error

 - did not use table_search or table_add (-1pt)
 - did not rotate the list of each bucket (-1pt)

 - incomplete code but writes some related functions: only 1 pt

 5

 Student ID: Name:

 2. (10 pt) Assembly
 2.1 (5 pt) Given the following assembly code, re-construct the C code that produced it.

 .section .rodata
 .LC1:

 .string "%lu\n"

 mystery1:
 0x00400566 <+0>: cmp $0, %rsi
 0x00400569 <+3>: jle 0x400599 <mystery1+51>
 0x0040056b <+5>: push %rbp
 0x0040056c <+6>: push %rbx
 0x0040056d <+7>: sub $0x8, %rsp
 0x00400571 <+11>: mov %rsi, %rbx
 0x00400574 <+14>: mov %rdi, %rbp
 0x00400577 <+17>: sarl $1, %rbx
 0x0040057a <+20>: callq 0x400566 <mystery1>
 0x0040057f <+25>: mov -0x8(%rbp, %rbx, 8), %rsi
 0x00400584 <+30>: mov $.LC1, %edi
 0x00400589 <+35>: mov %0x0, %eax
 0x0040058e <+40>: callq 0x400430 <printf>
 0x00400593 <+45>: add $0x8, %rsp
 0x00400597 <+49>: pop %rbx
 0x00400598 <+50>: pop %rbp
 0x00400599 <+51>: ret

 void mystery1(long *arr, size_t count) {
 if (___________________) { // line 1

 ___________________; // line 2
 printf("%lu\n", arr[count - 1]); // line 3

 }
 }

 Answer:

 void mystery1(long *arr, size_t count) {
 if (count > 0) { // line 1

 mystery1(arr, count / 2) ; // line 2
 printf("%lu\n", arr[count - 1]); // line 3

 }
 }

 6

 grading criteria
 wrong answer → -2 (all wrong answer → get 0 in total)
 wrong answer in right form, ex) mystery1(arr, count) → -1

 2.2 (5 pt) Given the following assembly code, re-construct the C code that produced it.

 int mystery2(char *param1, int *param2, int param3) {
 int local = strlen(param1); // line 1
 for (int i = rand(); i < 0 ; i += 4) { // line 2

 *param2 -= i; // line 3
 local = 5*local + 14; // line 4

 }
 return -mystery2(NULL,&local,param2[1]*param3); // line 5

 }

 mystery2:
 push %rbp
 push %rbx
 sub $0x18,%rsp
 mov %rsi,%rbx
 mov %edx,%ebp
 callq <strlen>
 mov %eax,0xc(%rsp)
 callq <rand>
 jmp .L2

 .L1:

 sub %eax, (a) d

 mov 0xc(%rsp),%ecx
 lea 0xe(%rcx,%rcx,4),%ecx
 mov %ecx,0xc(%rsp)

 (b) d

 .L2:

 (c) d

 jl .L1
 mov %ebp,%edx
 imul 0x4(%rbx),%edx
 lea 0xc(%rsp),%rsi
 mov 0x0,%edi
 callq <mystery2>
 neg eax
 add 0x18,%rsp
 pop rbx
 pop rbp
 ret

 7

 Answer

 (a) : (%rbx) , (b): add $0x4,%eax , (c) : cmp $0,%eax

 mystery2:
 push %rbp
 push %rbx
 sub $0x18,%rsp
 mov %rsi,%rbx
 mov %edx,%ebp
 callq <strlen>
 mov %eax,0xc(%rsp)
 callq <rand>
 jmp .L2

 .L1:
 sub %eax, (%rbx)
 mov 0xc(%rsp),%ecx
 lea 0xe(%rcx,%rcx,4),%ecx
 mov %ecx,0xc(%rsp)
 add $0x4,%eax

 .L2:
 cmp $0,%eax
 jl .L1
 mov %ebp,%edx
 imul 0x4(%rbx),%edx
 lea 0xc(%rsp),%rsi
 mov 0x0,%edi
 callq <mystery2>
 neg eax
 add 0x18,%rsp
 pop rbx
 pop rbp
 ret

 grading criteria
 Only give the points with exact answers

 (a) 2
 (b) 2
 (c) 1

 8

 Student ID: Name:

 3. (10 pt) Exception
 3.1 (2 pt) There are two types of exception: trap and interrupt. Which exception type
 corresponds to (a) and (b)?
 (a) occurs when a user presses a key on the keyboard.
 (b) occurs when program requests heap memory.

 Answer: (a):interrupt, (b): trap
 Guide for grading - 1 points for each exception type

 3.2 (2 pt) Following code denotes the situation where the exception handler kills the
 application when the exception occurs. Among the following, select the exception(s)
 corresponding to the case of the following code.

 int *ptr;
 ptr = 0;
 *ptr = 1;

 1. segmentation fault
 2. IO completion
 3. system call
 4. divide-by-zero

 Answer: 1
 1 and 4 are fault.
 2 is interrupt. 3 is trap.

 3.3 (6 pt) When the user program calls a system call, the trap instruction is executed and the
 execution mode changes from the user mode to the kernel mode. It is called “mode switch”.
 When the OS switches the CPU from one program to another, the OS saves the registers of
 the old process and loads the register values for the new program. Please specify whether
 the following situation corresponds to mode switch, context switch or both.

 a) privilege level changes (2pt): mode switch.
 b) current address map (page table) changes (2pt): context switch
 c) current register values are saved (2pt): both

 Explanation
 a) The privilege level changes when changing from user mode to kernel mode.

 During context switch, one process in kernel model is changed to another process in
 kernel mode, so the privilege level does not change.

 9

 b) A process has a single page table. The page table of a process contains address
 maps of both user mode and kernel mode. So the page table does not changes
 during mode switch.
 In case of context switch, the process is changed so the page table is also changed.

 c) During mode switch, a process in user mode saves its register values to the kernel
 stack and turns into the kernel mode.
 During context switch, one process in kernel mode saves its register values in the
 memory and is switched to other process.

 10

 Student ID: Name:

 4. (10 pt) Memory Allocation
 4.1 (3 pt) Consider the list of free memory chunks below. Show the free memory chunks
 after “allocate (64)” using “first-fit”.

 48->32->64->64->256

 4.2 (3 pt) Consider the list of free memory chunks below. Show the free memory list after
 “allocate (64)” using “best-fit”.

 48->32->128->256

 4.3 (4 pt) Consider the following code. If you run this code, what is going to happen? Is it
 going to run forever? Or is the operating system going to kill the program at some point? To
 get the full credit, provide detailed reasoning.

 #include <stdio.h>
 #include <stdlib.h>

 int main(){
 while (1) {

 malloc (0) ;
 }
 return 0;

 }

 answer:
 malloc (0) allocates a minimal allocation unit of memory. Thus, the memory is exhausted at
 the end. This results in the corresponding process to be killed or crashed. .

 11

 grading criteria
 - correct answer without detailed reasoning. 2pt

 Student ID: Name:

 5. (15 pt) IO
 Consider the following text file “txt”. It contains 5 lines of string written in text editor (vi,
 emacs, nano). EOF means end of file.

 012345
 123456
 234567
 345678
 456789
 EOF

 5.1 (5 pt) What is the output of this program? Please explain the reason. Assume that there
 is no runtime error.

 #include <stdio.h>
 #include <fcntl.h>
 #include <unistd.h>

 int main(int argc, char** argv) {
 char buf[10];
 int fd, i;
 fd = open("txt", O_RDONLY, 0640);

 for (i = 0; i < 5; i++) {
 read(fd, buf, 4);
 printf("%c", buf[0]);

 }
 return 0;

 }

 Answer: 04264
 04151 is also correct if ONLY the student wrote that “new line can be 2 bytes, carriage
 return (CR) and line feed (LF), or “\r\n” ”

 Explanation
 New line character (‘\n’) takes 1 byte.

 Guide for grading - no partial point; no deduction even if no explanation (except 04151)

 12

 5.2 (5 pt) What is the output of the following program?

 #include <stdio.h>

 int main(int argc, char** argv) {
 char buf1[10], buf2[10];
 int n1, n2;
 FILE *fp = fopen("txt", "r");

 fgets(buf1, 10, fp);
 fscanf(fp, "%d", &n1);
 fgets(buf2, 10, fp);
 fclose(fp);
 fp = fopen("txt", "r");
 fscanf(fp, "%d", &n2);
 printf("%s%d%s%d\n", buf1, n1, buf2, n2);

 return 0;
 }

 Answer:
 012345
 123456
 12345

 The answer should be written in 3 lines
 “012345\n123456\n12345\n” is also correct (it needs 3 new line characters)

 Explanation
 There are 4 read operations.
 1st read: buf1 = “012345\n”. buf1 contains one line.
 2nd read: n1 = 123456. File pointer is now the end of the 2nd line (‘\n’).
 3rd read: buf2 = “\n”. fgets() reads the remaining part of the 2nd line.
 4th read: n2 = 12345. fp is closed and reopened, so n2 stores 012345 in “integer”.

 Guide for grading - give 1 point for followings:
 - 1st line starts with 012345
 - 2nd line starts with 123456
 - the last line ends with 12345 (or 12345\n)

 13

 5.3 (5 pt) Following is man page of lseek() .

 NAME
 lseek - reposition read/write file offset

 SYNOPSIS
 #include <unistd.h>
 off_t lseek(int fd , off_t offset , int whence);

 DESCRIPTION
 lseek () repositions the file offset of the open file description
 associated with the file descriptor fd to the argument offset
 according to the directive whence as follows:

 SEEK_SET
 The file offset is set to offset bytes.

 SEEK_CUR
 The file offset is set to its current location plus offset
 bytes.

 SEEK_END
 The file offset is set to the size of the file plus offset
 bytes.

 lseek () allows the file offset to be set beyond the end of the
 file. If data is later written at this point, subsequent reads of
 the data in the gap (a "hole") return null bytes ('\0') until
 data is actually written into the gap.

 The following program creates a file “txt2”. Then, it writes some characters to “txt2”. When
 the program writes the characters to “txt2” file, it sets the current offset using lseek() .
 What is the content of “txt2” after executing the program? Assume that “txt2” did not
 exist at the beginning.

 #include <stdio.h>
 #include <stdlib.h>
 #include <fcntl.h>
 #include <unistd.h>

 int main(int argc, char** argv) {
 char buf[1024];
 FILE *fp = fopen("txt", "r");
 int fd2 = creat("txt2", 0640); // create txt2

 for (int i = 1; i <= 2; i++) {
 fgets(buf, 1024, fp); // read content of txt
 lseek(fd2, i, SEEK_END);
 write(fd2, buf, i);

 }

 14

 lseek(fd2, 0, SEEK_SET);

 for (int i = 1; i <= 2; i++) {
 fgets(buf, 1024, fp);
 write(fd2, buf, i);
 lseek(fd2, i, SEEK_CUR);

 }

 return 0;
 }

 Answer: 203412

 Explanation
 After the first loop, txt2 becomes “H 0 H H 1 2 ” (H means “hole”).
 After the second loop, txt2 becomes “ 2 0 3 4 1 2 ”.

 Guide for grading - give 1 point for followings:
 - the answer has 6 digits
 - 2nd, 5th, 6th digits are 0, 1 ,2, respectively.

 15

 Student ID: Name:

 6. (20 pt) Process
 6.1 (5 pt) What is the output of the following program? If there are more than one possible
 output, write all of them.

 #include <stdio.h>
 #include <unistd.h>
 #include <sys/wait.h>

 int main(int argc, char** argv) {
 int num = 0;
 pid_t pid;

 for (int i = 0; i < 3; i++) {
 if ((pid = fork()) == 0) {

 num++;
 }
 else {

 waitpid(pid, NULL, 0);
 printf("%d", num);
 return 0;

 }
 }
 return 0;

 }

 Answer: 210

 Explanation
 Let a process P1 forks to make child P2, P2 makes P3, and P3 makes P4. The value of
 “num” in P1, P2, P3, P4 is 0, 1, 2, 3, respectively.
 1) P4 does not print anything and just return 0
 2) P3 waits P4 and prints 2
 3) P2 waits P3 and prints 1
 4) P1 waits P2 and prints 0
 Grandchildren are not children.

 Guide for grading - no partial point; If the answer contains multiple outputs, no point

 16

 6.2 (5 pt) The following ‘p.c’ implements redirection. Fill in the blanks so that a command “./p
 [somepgm] [file1] [file2]” runs “[somepgm] < [file1] > [file2]”. You can write the answer in
 multiple lines.

 // p.c

 #include <stdio.h>
 #include <fcntl.h>
 #include <unistd.h>
 #include <sys/wait.h>

 int main(int argc, char** argv) {
 pid_t pid;
 if (argc < 4) return 0;

 pid = fork();
 if (pid == 0) {

 /* in child */
 int fd1, fd2;
 fd1 = open(A , O_RDONLY, 0640);
 fd2 = creat(B , 0640);

 C

 close(fd1);
 close(fd2);

 char *argv_new[] = {argv[1], NULL};
 execvp(argv[1], argv_new);
 fprintf(stderr, "exec failed\n");
 return -1;

 }
 /* in parent */
 pid = wait(NULL);
 return 0;

 }

 A:
 B:
 C:
 Answer
 A: argv[2] B: argv[3] C: close(0); close(1); dup(fd1); dup(fd2);

 For A and B, “[file1]” and “[file2]” is also correct (both [] and “ are needed).
 For C, there are multiple answers like followings:

 fclose(stdin); fclose(stdout); dup(fd1); dup(fd2);
 dup2(fd1, 0); dup2(fd2, 1);

 fd1 must be duplicated to fd 0, and fd2 be 1.

 Guide for grading - give 1/1/3 points for each black.

 17

 6.3 (10 pt) Refer to the following p1.c and p2.c. Assume that there are two programs, p1
 (executable program of p1.c) and p2 (executable program of p2.c) in the same directory.
 How many ‘A’s would be printed if we run p1 with argument “4” (i.e. “ ./p1 4 ”)?

 // p1.c

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>

 int main(int argc, char** argv) {
 int n = atoi(argv[1]); // convert argument into integer
 if (n < 1 || n > 9) return 0;

 char buf[2] = {'0', '\0'};

 if (fork() == 0) {
 buf[0] = buf[0]+(n-1); // buf[0] becomes digit ‘(n-1)’

 }
 else if (n >= 2) {

 buf[0] = buf[0]+(n-2);
 }

 char *argv_new[] = {"./p2", buf, NULL};
 execvp("./p2", argv_new);
 return 0;

 }

 // p2.c

 #include <stdio.h>
 #include <unistd.h>

 int main(int argc, char** argv) {
 fprintf(stderr, "A\n");
 fork();

 char *argv_new[] = {"./p1", argv[1], NULL};
 execvp("./p1", argv_new);
 return 0;

 }

 Answer: 50
 Explanation
 Let A(n) be the number of printed ‘A’s when running “./p1 n”.
 A(0) = 0
 A(1) = 2 (Both parent and child execute “./p2 0”)
 When n >= 2,
 A(n) = (1 + 2*A(n-1)) + (1 + 2*A(n-2)) = 2*(1 + A(n-1) + A(n-2))
 Thus, A(2) = 6, A(3) = 18, A(4) = 50

 Guide for grading - give 3 points for 34 (1 error that A(1) = 1)

 18

 Student ID: Name:

 7. (10 pt) Signal
 7.1 (4 pt) Explain the sequence of events when a user types Ctrl-C in a Unix-based
 system. Your explanation should cover the following:

 ● What signal is generated.
 ● The role of the operating system in handling this signal.
 ● The default action associated with this signal.

 Answer:

 When a user types Ctrl-C , the following sequence of events occurs:

 ● The keystroke generates an interrupt.
 ● The operating system handles this interrupt by sending a SIGINT signal to the

 application process running in the foreground.
 ● The default action associated with the SIGINT signal is to terminate the process.

 grading criteria

 ● What signal is generated. (+1)
 ● The role of the operating system in handling this signal. (+1)
 ● The default action associated with this signal. (+2)

 7.2 (2 pt) Explain the differences between using raise() and kill() functions to send
 signals in Unix-based systems.

 Answer:

 raise() : Sends a signal to the calling process itself. (+1pt)

 kill() : Sends a signal to any process specified by its PID. (+1pt)

 19

 7.3 (4 pt) Modify the following skeleton code to block the SIGINT signal while performing a
 critical section of code and then unblock it afterwards. Ensure the program handles the
 SIGINT signal by printing "SIGINT received" when it is caught.

 #include <stdio.h>
 #include <signal.h>

 void sigint_handler(int sig) {
 printf("SIGINT received\n");

 }

 int main() {
 sigset_t set;

 // Install the signal handler
 // (student code here)
 ____________(A)_____________

 // Initialize the signal set
 sigemptyset(&set);
 sigaddset(&set, SIGINT);

 // Block SIGINT
 // (student code here)
 ____________(B)_____________

 // Critical section
 printf("In the critical section\n");
 sleep(5); // Simulate critical section work

 // Unblock SIGINT
 // (student code here)
 ____________(C)_____________

 // Infinite loop to keep the program running
 while (1) {

 // Waiting for signals
 }

 return 0;
 }

 20

 Answer:

 #include <stdio.h>
 #include <signal.h>

 void sigint_handler(int sig) {
 printf("SIGINT received\n");

 }

 int main() {
 sigset_t set;

 // Install the signal handler
 signal(SIGINT, sigint_handler);

 // Initialize the signal set
 sigemptyset(&set);
 sigaddset(&set, SIGINT);

 // Block SIGINT
 sigprocmask(SIG_BLOCK, &set, NULL);

 // Critical section
 printf("In the critical section\n");
 sleep(5); // Simulate critical section work

 // Unblock SIGINT
 sigprocmask(SIG_UNBLOCK, &set, NULL);

 // Infinite loop to keep the program running
 while (1) {

 // Waiting for signals
 }

 return 0;
 }

 grading criteria
 +2 for the first correct line of code
 +1 for each second/third correct line of code

 21

 Student ID: Name:

 8. (10 pt) Short answers
 8.1 (2 pt) During the execution of a program, do you expect to have a higher cache miss rate
 or a higher page “miss” rate (or page faults)? Please explain in one sentence.

 Answer: higher cache miss rate. page granularity is much larger than a cache line.

 grading criteria
 - no partial point

 8.2 (2 pt) Provide one similarity and one difference between exceptions and function calls.

 Answer:
 similarities: both result in a change of control flow.
 difference: there can be many different answers.

 - exceptions sometimes do not return, function calls always return.
 - exceptions occur based on some events (or traps) while functions are initiated by the

 programmer
 - exceptions can require support from the kernel while functions are all within the user

 code.

 grading criteria
 - similar (1pt)
 - difference (1pt)

 8.3 (4 pt) Page Table
 (a) (1 pt) Assume that a page table entry is 4B (ignore the valid bit) and there are 16k virtual
 pages. How big is the page table?

 Answer: 4B x 16k = 64kB

 grading criteria: no partial point

 (b) (1 pt) Now assume that there are 20 processes in the system. How does the page table
 size change to support 20 processes?

 Answer: per-process page table size does not change (64kB) but the each process needs
 its own page table —> 64kB x 20 = 1280 KB

 grading criteria: no partial point.

 (c) (2 pt) Page tables are often stored in memory because of their size. However, this incurs
 latency overhead since all memory accesses require two accesses (one for the page table
 and one for the actual data itself). To accelerate the translation, a dedicated (small)

 22

 hardware cache is proposed that saves recently translated information. Is this a good idea?
 Why or why not?

 Answer: Yes because of locality. Recently used translation will likely be used again.

 grading criteria
 - 1pt : if student says yes

 8.4 (2 pt) Which instructions can potentially cause an exception and result in the same
 instruction being re-executed?

 (a) DIV (divide) (b) JE (jump) (c) MOV (d) ADD

 Answer: (C) page fault caused by memory load instruction
 (B) also can be an answer. When the program size is large, the operating system

 loads the portion of the program on the memory, to save the memory space. So when the
 program jumps to the portion of program that is not in memory, the page fault can occur.

 grading criteria
 - select b, c -> 2pts
 - select only b -> 2pts
 - select only c -> 2tps
 - select b or c with a or d -> 1pt
 - did not select b nor c : 0pt

 23

