
Spring Semester 2021 EE209 Final Exam

Pledging of No Cheating

Note: Please write down your student ID and name, sign on it (draw your

signature), and date it. If you do not fill out this page, we won’t grade your final

exam.

저는 이번 시험을 온라인으로 치르면서 이 과목에서 금지한 어떤 부정행위도

저지르지 않을 것임을 서약합니다. 추후에 위반사항이 발견되었을 경우

합당한 모든 불이익을 감수하겠습니다.

I pledge that I will not participate in any activity of cheating disallowed by this

course while taking this exam online. I will assume full responsibility if any

violation is found later.

Student ID: Name:

Signature: Date:

Spring Semester 2021

KAIST EE209

Programming Structures for Electrical Engineering

Final Exam

Wed. June 16, 2021, 13:00 ~ 15:45 (zoom)

Name:

Student ID:

Class: A , B

This exam is closed book and notes. Read the questions carefully and focus your answers on what has
been asked. You are allowed to ask the instructor/TAs for help only in understanding the questions, in
case you find them not completely clear. Be concise and precise in your answers and state clearly any
assumption you may have made. You can submit/upload your answers early but you are allowed to leave
the zoom session only after 3:00PM. The submission format can be either MS word file format (.docx) or
a PDF file (You can save it in PDF format in MS-Word) You can insert the space in the original exam file if
necessary. Good luck!

Question 1 / 6
Question 2 / 15
Question 3 / 35
Question 4 / 25
Question 5 / 24
Question 6 / 10
Question 7 / 24

Total: / 139

1.(6pt) cmp
Consider the following memory layout. Assume 32 bit CPU with 2’s complement representation.

Value A:
Address content
2000 1111 1111 (FF)
2001 1111 1111 (FF)
2002 1111 1000 (F8)
2003 1100 1010 (CA)

Value B
Address content
2010 1111 1111 (FF)
2011 1111 1111 (FF)
2012 1111 1000 (F8)
2013 1110 1010 (EB)

a. (2pt) Assume CPU is Big Endian architecture. Represent the value A and value B in signed integer

(2’s complement). Write in hexadecimal form.

b. (2pt) Assume CPU is Little Endian architecture. Represent the value A and value B in signed
integer (2’s complement). Write in hexadecimal form.

c. (2pt) Load value A and value B to register A and register B.
cmpl regA, regB

Show the output of ZF, SF, CF and OF for little endian CPU.

2. (15pt) Assemble and Link

We assemble a simple C program.

#include <stdio.h>
int main(void) {
 if (getchar() == 'A')
 prinf("Hi\n");
 return 0;
}

Please refer to the assembly code below. Note that the developer mis-spelled the printf() to
prinf().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

.section ".rodata"

msg:

 .asciz "Hi\n"

 .section ".text"

 .globl main

main:

 pushl %ebp

 movl %esp, %ebp

 call getchar

 cmpl $'A', %eax

 jne skip

 pushl $msg

 call prinf

 addl $4, %esp

skip:

 movl $0, %eax

 movl %ebp, %esp

 popl %ebp

 ret

a. (5pt) Show the contents of the symbol table after the assembler generates the object file. Fill
the blanks of the table below with the proper contents. A binary image consists of a number of
sections. They include .bss, .data, .text and etc. Some of the symbols may not be assigned a
section by the assembler. For the symbols that are not assigned a section, mark the section
name of those symbols as ‘X’.

label section local / global
 .

b. (3pt) Consider the symbols obtained in question 2.a. Which of the symbol references need

relocation? Specify the line numbers.

c. (3pt) Linker combines the several object files and the libraries, resolving references and
generates the final binary image. Which of the symbols in question 2.a need to be resolved by
the linker.

d. (4pt) The above C program fails to compile. Assume that the compiler has failed to compile this
code because the programmer has mis-spelled the printf() with prinf(). After preprocessing, the
compiler goes through four phases in creating the final binary image; Assemble-pass1 (symbol
table generation), Assemble-pass2 (code generation), Link-pass1 (symbol resolution) and Link-
pass2 (relocation). In which phase of the compilation, does this program fail to compile?

3. (15pt) Call stack setup and parameter setting
We write a function to sum all values in the array. Assume IA32 architecture CPU. The assembly code
generated from C code varies widely dependent upon the internal algorithm of the underlying compiler.
Modern compiler adopts sophisticated algorithm to make the binary image faster and smaller. In this
question, assume that we use very naïve compiler that does not use any optimization techniques. Assume
that all local variables are allocated in the associated stack. In evaluating an expression, assume that the
temporary values are stored in the six general purpose registers (EBX, ESI, EDI, EAX, ECX and
EDX) and do not occupy the stack space. Assume that when calling a function, the caller always saves EAX,
ECX and EDX registers no matter whether they have been used or not. When a function is called, the callee
always saves EBX, ESI and EDI registers no matter whether the callee is going to use them or not.

/* sum1.c */

#include <stdio.h>
#include <stdlib.h>

int sum (int* arr, int n)
{
if (n == 1)
 return arr[n-1] ;
return arr[n-1] + sum (arr+1, n-1) ;

}

int arr_init(int *arr, int n) {
 for (int i = 0 ; i < n ; ++i)
 arr[i] = rand() % 100;
 return 0 ;
}

int main()
{
int arr[100] ;
int x ;

arr_init(arr, 100) ;

x = sum (arr, 100) ;

printf(“sum : %d”, x) ;
return 0 ;

}

a. (10pt) Assume we have generated the assembly code for sum1.c. The function main() pushes
two parameters, 100 and the start address of the arr array, to the stack and will execute call
sum. The code will look something like the one in the below.
 …
 call sum
 …

Function sum() is a recursive function. The main() calls sum(arr, 100). The sum(arr,100) will call
sum(arr+1, 99) and so on. The recursion will stop when sum(arr+99,1) is called. Remind that EAX,
ECX and EDX registers are saved by the caller and EBX, ESI and EDI registers are saved by the callee.
Show the stack contents after the first two calls to sum; sum (arr, 100), and sum (arr+1, 99), i.e.
till just before executing call sum with parameter 98. Please fill out the table below. Following
are the system state just before executing call sum in main(); 100 and &arr[0] have been
pushed to the stack. &arr[0] corresponds to 0xffffd0cc and the values of esp and ebp
registers are 0xffffd0b0 and 0xffffd268, respectively. For EAX, ECX, EDX, EBX, ESI and EDI,
you do not have to write the register values. Instead, just write the register name at the value (or
notes) field of the table.

Address Value (4byte) Notes

0xffffd05c
0xffffd060
0xffffd064
0xffffd068
0xffffd06c
0xffffd070
0xffffd074
0xffffd078
0xffffd07c
0xffffd080
0xffffd084
0xffffd088
0xffffd08c
0xffffd090
0xffffd094
0xffffd098
0xffffd09c
0xffffd0a0
0xffffd0a4
0xffffd0a8
0xffffd0ac
0xffffd0b0 0xffffd0cc &arr[0]
0xffffd0b4 100

b. (8pt) Compute the stack size for main(). Fill out the values in the table below. The assembly
code removes the parameters from the stack when the function returns. When the main() calls
multiple functions, the stack space used for passing the parameters for each function can be
reused across the function call.

s tack of main() Total s ize (Byte) Variable names
Local variables

Caller saved regis ters

Callee save regis ters

old ebp

return address (old eip)

arr_init: parameters

sum: parameters

printf: parameters

Stack s ize total N/A

c. (10pt) Compute total amount of stack used by sum(arr, 100) until it returns. Fill the table

below to compute the stack size for each execution of sum. The last call in the recursion,
sum(arr+99,1), does not call any other function. The stack size for sum(arr+99,1) can
be different from the preceding calls to sum.

For sum(100) ~ sum(2):
s tack of main() Total s ize (Byte) Variable names
Local variables

Caller saved regis ters

Callee save regis ters

old ebp

return address (old eip)

sum: parameters

Stack s ize total N/A

For sum(1):
s tack of main() Total s ize (Byte) Variable names
Local variables

Caller saved regis ters

Callee save regis ters

old ebp

return address (old eip)

sum: parameters

Stack s ize total N/A

Total size:

d. (2pt) Compute total amount of stack used by sum1.c, which corresponds to the summation of

stack size for main (question 3.b) and the total stack size required for returning from sum(arr,
100)(question 3.c).

e. (5pt) We like to use the for-loop instead of the recursion in implementing the sum. Refer to the
code below. Compute the stack size required to run sum1.c with the for-loop based sum. The
stack size to run sum1.c will be the summation of the stack size of the main() and the stack size
of for-loop based sum(). You can reuse the stack size of main() from question 3.b.

int sum (int* arr, int n)
{

int s = 0 ;
for (int i = 0 ; i < n ; ++i)
s += arr [i] ;

return s ;
}

new sum():

s tack of sum() Total s ize (Byte) Variable names
Local variables

Caller saved regis ters

Callee save regis ters

old ebp

return address (old eip)

function parameters

Stack s ize total N/A

Total size:

4.(25pt) fork and exec
Assume that fork() always succeeds. Assume that there is no stack overflow and no memory
bloating.

a. (3pt) How many ‘A’ will the foo1() print?

void foo1(){
 fork() ;
 printf(“A\n”) ;
 fork() ;
 printf(“A\n”) ;
 fork() ;
 printf(“A\n”) ;
 fork() ;
 printf(“A\n”) ;
}

b. (7pt) List all possible different output sequences of function foo3. Assume that
execvp()succeeds. In enumerating the output sequence, consider only A, B, C and D and
exclude the output of execvp(). For example, “A B outputofexecvp D” and “A
outputofexecvp B D” are the same sequence since both become “A B D” when you
ignore outputofevecvp. (). To get the full credit, provide the detailed reasoning.

 void foo3(){
 int pid ;
 pid = fork() ;

 if (pid == 0) {
 printf (“A\n”) ;
 char *argv[] = {“ls”,”-1”, NULL};
 execvp (“ls”, argv) ;
 printf (“B\n”) ;
 }
 else {
 printf (“C\n”) ;
 }
 printf(“D\n”) ;
 }

c. (15pt) What is the number of different outputs that the function foo2() can generate?

void foo2(){
fork() ;
printf(“A\n”) ;
fork() ;

printf(“B\n”) ;
fork() ;
printf(“C\n”) ;

}

5.(24pt) Signal
a. (2pt) Which signal is generated as a result of pressing “Ctrl-C”?

 (a) SIGKILL (b) SIGINT (c) SIGSTOP (d) SIGSEGV

b. (2pt) Select all functions that generate the signal.
(a) signal() (b) kill() (c) raise() (d) alarm()

Consider the following code signal1.c. The main function and the two signal handlers share the same
global variable value. This program counts the number of SIGINT signals and the number of SIGALARM
signal delivered to the process. We set the setitimer function to generate the SIGALARM in every 2
sec (wall clock time).

/* signal1.c */

#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/time.h>
int value = 0 ;
int sigINTcount = 0 ;
int sigALARMcount = 0 ;
void SigINTHandler(int sig) {
 sigINTcount++ ;
 value ++ ;
}
void SigALRMHandler(int sig) {
 sigALARMcount ++ ;
 value++;
 signal(SIGALRM, SigALRMHandler);
}
int main(void) {
 int i = 0 ;
 struct itimerval MyTimer ;
 signal(SIGINT, SigINTHandler);
 signal(SIGALRM, SigALRMHandler);
 /* Send first signal in 1 second, 0 microseconds. */
 MyTimer.it_value.tv_sec = 1;
 MyTimer.it_value.tv_usec = 0;
 /* Send subsequent signals in 1 second,
 0 microseconds intervals. */
 MyTimer.it_interval.tv_sec = 2 ;
 MyTimer.it_interval.tv_usec = 0;
 setitimer(ITIMER_REAL, &MyTimer, NULL);
 while(++i) {
 sleep(1) ;
 value++ ;
 }
}

c. (5pt) When there arrive multiple signals of the same type while the signal is blocked, only one

signal is delivered to the process after the signal is unblocked. In the above program, we like to
count the total number of sleep calls, the number of SIGINT’s delivered to the process and
SIGALRM’s that are delivered to the process using the variable value, i.e. value = i +

sigINTcount + sigALARMcount. Very rarely, the program does not behave correctly and
the above condition does not hold. Explain the reason.

d. (15pt) Modify signal1.c to fix the problem stated in the above question. Please refer to the
following signal manipulation functions. You may use some of these functions if necessary.

int sigemptyset(sigset_t *set);
int sigaddset(sigset_t *set, int signum);
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

You can use SIG_BLOCK or SIG_UNBLOCK in how field of sigprocmask to block or
unblock the signal, respectively.

6. (10pt) Optimization

Followings are the techniques to make the program run faster. Please explain the reason why it
makes the program run faster

a. (3pt) Use inline function (or macro) instead of using the normal function call.

b. (3pt) Unroll the loops.

c. (4pt) What is the disadvantage of using “inline function” or “unroll loops”.

7. (20pt) IO

Consider two ways to read the data from the file: fread() and read(). Assume that “sample.txt”
contains enough amount of data to read and fread() and that fread() and read() always
succeed.

a. (4pt) Consider readbuffer1.c. How many times, do the fread()’s in readbuffer1 get into the
kernel? You can assume that stream buffer size is 8 Kbyte.

/* readbuffer1.c */

#include <stdio.h>

 int main(void)
 {
 FILE *file_ptr;
 char arr[8192];

 file_ptr = fopen("sample.txt", "rb");
 if(file_ptr==NULL) return 1;

 fread(arr, sizeof(char), 8192, file_ptr);
 fread(arr, sizeof(char), 8192, file_ptr);
 fread(arr, sizeof(char), 8192, file_ptr);

 fclose(file_ptr);

 return 0;
 }

b. (4pt) Consider readbuffer2.c. How many times, do the read()’s in readbuffer2 get into the
kernel?

c. (4pt) Which of readbuffer1.c and readbuffer2.c runs faster? Please explain the reason. Provide
detailed reasoning to get the full credit.

/*readbuffer2.c */

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

 int main(void)
 {
 int fd;
 char arr[8192];

 fd = open("sample.txt", O_RDONLY);
 if(fd<0) return 1;

 read(fd, arr, 8192);
 read(fd, arr, 8192);
 read(fd, arr, 8192);

 close(fd);

 return 0;
 }

d. (4pt) Consider readbuffer3.c. How many times, do the fread()’s in readbuffer3.c

get into the kernel?

e. (4pt) Consider readbuffer4.c How many times, do the read()’s in readbuffer4.c
get into the kernel?

f. (4pt) Which of the readbuffer3.c and readbuffer4.c do you think runs faster?
Provide the detailed reasoning for the answer.

/* readbuffer3.c */

#include <stdio.h>

 int main(void)
 {

 FILE *file_ptr;
 char arr[8192];

 file_ptr = fopen("sample.txt", "rb");
 if(file_ptr==NULL) return 1;

 fread(arr, sizeof(char), 1, file_ptr);
 fread(arr, sizeof(char), 1, file_ptr);
 fread(arr, sizeof(char), 1, file_ptr);

 fclose(file_ptr);

 return 0;
 }

/*readbuffer4.c */

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

 int main(void)
 {
 int fd;
 char arr[8192];

 fd = open("sample.txt", O_RDONLY);
 if(fd<0) return 1;

 read(fd, arr, 1);
 read(fd, arr, 1);
 read(fd, arr, 1);

 close(fd);

 return 0;
 }

