Spring Semester 2015
KAIST EE209

Programming Structures for Electrical Engineering

Final Exam

Name:

Student ID:

This exam is closed book and notes. Read the questions carefully and focus your answers on
what has been asked. You are allowed to ask the instructor/TAs for help only in understanding
the questions, in case you find then not completely clear. Be concise and precise in your
answers and state clearly any assumption you may have made. You have 135 minutes to
complete your exam. Be wise in managing your time. Good luck.

Question 1 /15
Question 2 /20
Question 3 /15
Question 4 /25
Question 5 /25

Total /100

Name: Student ID:

1. Basic Concepts (15 points)

A. Describe external and internal testing briefly. (5 points)

B. List four external testing and explain each testing briefly. (5 points)

C. List four exceptions and explain each exception briefly. (5 points)

Name: Student ID:

2. Assembly Language: Return and Argument Passing of Structures
(20 points)

In the class, we discussed how we return the primitive type values or pass them as arguments.
This problem is about how to do it for “structures”, which you should find the answers by
conjecturing the assembly codes of the given C code.

The following C code has a function word_sum having structures as argument and return
values, and a function prod that calls word_sum:

typedef struct {
int a;
int *p;

} stri;

typedef struct {
int sum;
int diff;
} str2;

str2 word_sum(strl sl1) {
str2 result;
result.sum = sl.a + *sl.p;
result.diff = sl.a - *sl.p;
return result;

}
int prod(int x, int y) {
strl si;
str2 s2;
sl.a = X;
sl.p = &y;

s2 = word_sum(sl);
return s2.sum * s2.diff;

Name:

Student ID:

GCC generates the following code for these two functions:

pushl
mov1l
pushl
movl
movl
movl
movl
movl
subl
mov1l
addl
movl
popl
popl
ret

O 00 NOUVT D WDN B

P R R RPRPRLBR
oV hd WNRO®

word_sum:

%ebp

%»esp, %ebp
%ebx

8(%ebp), %eax
12(%ebp), %ebx
16(%ebp), %edx
(%edx), %edx
%ebx, %ecx
%»edx, %ecx
%ecx, 4(%eax)
%ebx, %edx
%edx, (%eax)
%»ebx

%»ebp

$4

O 00 NOWUVT D WDN B

P R R PR PR BR
OV h WNRO®

prod:
pushl
mov1l
subl
leal
leal
movl
movl
movl
movl
call
subl
movl
imull
leave
ret

%ebp

%»esp, %ebp
$20, %esp
12(%ebp), %edx
-8(%ebp), %ecx
8(%ebp), %eax
%eax, 4(%esp)
%»edx, 8(%esp)
%»ecx, (%esp)
word_sum

$4, %esp
-4(%ebp), %eax
-8(%ebp), %eax

The optional numeric parameter to ret specifies the number of stack bytes to be released
after the return address is popped from the stack. Thus the instruction ret $4 is like a
normal return instruction, but it increments the stack pointer by 8 (4 for the return address
plus 4 additional), rather than 4. The lea (load effective address) instruction calculates the
address of the first operand and loads it into the second operand while mov instruction copies
the first operand into the second operand. The imul instruction is signed multiply. It
multiplies two operands and stores the result to the second operand. The 1leave instruction is

high level procedure exit. It sets esp to ebp, then pops ebp.

A. We can see in lines 5-7 of the code for word_sum that it appears as if three values are
being retrieved from the stack, even though the function has only a single argument.
Compare the C and assembly code to infer how to use the memory space and describe
what these three values are. (5 points)

Name: Student ID:

B. We can see in line 4 of the code for prod that 20 bytes are allocated in the stack
frame. These get used as five fields of 4 bytes each. Compare the C and assembly

code to infer how to use the memory space and describe how each of these fields gets
used. (5 points)

C. How would you describe the general strategy for passing structures as arguments to a
function? (5 points)

D. How would you describe the general strategy for handling a structure as a return
value from a function? (5 points)

Name: Student ID:

3. Modularization (15 points)

The following C code is an implementation of a list data structure.

/* list.c */

struct Node {
const char *item;
struct Node *next;

}s

struct List {
struct Node *first;

}s

struct List *List new(void) { .. }

void List free(struct List *1) { .. }

void List _insert(struct List *1, const char *item) { .. }
char *List remove(struct List *1, const char *item) { .. }
int List _search(struct List *1, const char *item) { .. }
int List_isEmpty(struct List *1) { .. }

/* client.c */
#tinclude “stack.c”
/* use the functions defined in stack.c */

A. Describe the problems of this implementation (list up the answers by an itemized list,
e.g., Probl: xxxxx, Prob2: yyyy, Prob3: zzzz) (5 points)

Name: Student ID:

B. Improve this code in terms of modularity by satisfying the philosophies of (a)
separation of interface and implementation and (b) encapsulation. (10 points)

/* list.h */

Name: Student ID:

/* list.c */

Name: Student ID:

4. Data Structure (25 points)

Following C code is an implementation of a hash table module and a test program.
HashTable_insert() inserts node to ht using the hash function ht->hashfunc and the
size of the hash table ht->size. The new node is inserted as the first node of the slot. The
macro offsetof(type, member) returns the offset of the field member from the start of
the structure type.

A. Fill the blanks in the following code. Each blank is a single line. (20 points)

/* hashtable.h */
#ifndef _ HASHTABLE H__
#define _ HASHTABLE H__

#tinclude <stddef.h>

struct Node {
struct Node *prev;
struct Node *next;

}s

struct HashTable {
struct Node **hashtable;
int (*hashfunc)(void*);
int size;

}s

typedef struct Node *Node_T;
typedef struct HashTable *HashTable T;

HashTable T HashTable_new(size t size, int (*hashfunc)(void*));
void HashTable_free(HashTable T ht);

void HashTable_insert(HashTable T ht, Node T node);

void HashTable_remove(HashTable T ht, Node T node);

void HashTable_map(HashTable T ht, void (*map)(void*));

#tendif

/* hashtable.c */
#tinclude <stdio.h>
#tinclude <stdlib.h>
#tinclude "hashtable.h"

HashTable T HashTable_new(size t size, int (*hashfunc)(void*))

{
HashTable T ht = (HashTable T)malloc(sizeof(struct HashTable));
if (ht == NULL) return NULL;

ht->hashtable = (struct Node**)calloc(size, sizeof(struct Node*));
if (ht->hashtable == NULL) {
free(ht);

Name: Student ID:

return NULL;
}

ht->hashfunc = hashfunc;
ht->size = size;

return ht;

}

void HashTable_free(HashTable T ht)

{
free(ht->hashtable);

free(ht);
}

void HashTable_insert(HashTable T ht, Node T node)

{
int hash =

if (ht->hashtable[hash] == NULL) {
node->next = NULL;

}

else {

}

node->prev = NULL;

}

void HashTable_remove(HashTable T ht, Node T node)

{
int hash =

Node T p;

for (

)AL

if (p == node)
break;

}

if (p == NULL)
return;

if (p->prev)
p->prev->next = p->next;
else
ht->hashtable[hash] = p->next;

Name: Student ID:

if (p->next)
p->next->prev = p->prev;

}

void HashTable_map(HashTable_T ht, void (*map)(void *in))

{
Node T p;
int i;

for (i = 0; i < ht->size; i++)

for ()
map((void *)p);

}

/* testhashtable.c */
#tinclude <stdio.h>
#tinclude <stddef.h>
#tinclude <assert.h>
#tinclude "hashtable.h"

#define HT_SIZE 5
#define NUM_ELEM 10

struct myNode {
struct Node node;
int value;

}s

int myHashFunc(void *in)
{
Node T node = (Node T)in;
struct myNode *p = (struct myNode*)((char*)node -
offsetof(struct myNode, node));
return p->value;

}

void myMap(void *in)
{
Node T node = (Node T)in;
struct myNode *p = (struct myNode*)((char*)node -
offsetof(struct myNode, node));
printf("%d\n", p->value);
}

int main(int argc, char *argv[])
{
HashTable T ht;
struct myNode elem[NUM_ELEM];
int i;

10

Name: Student ID:

ht = HashTable_new(HT_SIZE, myHashFunc);
assert(ht);

for (i = ©; i < NUM_ELEM; i++) {
elem[i].value = i;
HashTable_ insert(ht, &elem[i].node);
}

HashTable_map(ht, myMap);
printf("\n");

for (i = 0; i < NUM_ELEM; i =1 + 2) {
HashTable_remove(ht, &elem[i].node);

}

HashTable_map(ht, myMap);
HashTable free(ht);

return 9;

B. What is the output printed out? (5 points)

11

Name: Student ID:

5. Dynamic Memory (25 points)

Following C code is an implementation of a dynamic memory manager module, named heap
manager K&R, which is given in the assignment 6. In this implementation, the heap memory
is divided into several units. A chunk is a set of the contiguous units in memory. Each
chunk’s header unit contains a length and, if the chunk is free, a pointer to the next chunk in
the free list. The free list is a singly-linked list and chunks in the free list are in increasing
order of memory address. When a user calls HeapMgr_malloc() to allocate memory, this
module finds a large enough chunk in the free list and return it. If the user calls
HeapMgr_free() to deallocate memory, this module traverses the free list to find the
correct spot for the given chunk to insert it into the free list considering the memory address
of the chunk. Fill the blanks in the following code. Each blank is a single line.

/* heapmgr.h */

#ifndef HEAPMGR_INCLUDED
#define HEAPMGR_INCLUDED
#include <stddef.h>

void *HeapMgr_malloc(size_t uiSize);
void HeapMgr_free(void *pv);

#tendif

/* heapmgrkr.c */
#include "heapmgr.h"

struct header { /* block header */
struct header *ptr; /* next block if on free list */
unsigned size; /* size of this block */

}s

typedef struct header Header;

static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */

static Header *morecore(unsigned);

/* malloc: general-purpose storage allocator */
void *HeapMgr_malloc(unsigned nbytes)
{

Header *p, *prevp;

unsigned nunits;

nunits = 5
if ((prevp = freep) == NULL) { /* no free list yet */
base.ptr = freep = prevp = &base;

12

Name: Student ID:

base.size = 0;

}

for (p = prevp->ptr; ; prevp = p, p = p->ptr) {
if (p->size >= nunits) { /* big enough */

if (p->size == nunits) /* exactly */
prevp->ptr = p->ptr;
else { /* allocate tail end */
5
5
5
}

freep = prevp;
return (void*)(p+1);
}
if (p == freep) /* wrapped around free list */
if ((p = morecore(nunits)) == NULL)
return NULL; /* none left */

}

#tdefine NALLOC 1024

/* morecore: ask system for more memory */
static Header *morecore(unsigned nu)
{

char *cp, *sbrk(int);

Header *up;

if (nu < NALLOC)
nu = NALLOC;

cp = sbrk(nu * sizeof(Header));

if (cp == (char *) -1) /* no space at all */
return NULL;

up = (Header *) cp;

up->size = nu;

HeapMgr_free((void *)(up+1));

return freep;

}

/* free: put block ap in free list */
void HeapMgr_free(void *ap)

{
Header *bp, *p;

bp = (Header *)ap - 1; /* point to block header */
for (p = freep; !(bp > p & bp < p->ptr); p = p->ptr)
if (p >= p->ptr & (bp > p || bp < p->ptr))

13

Name: Student ID:

break; /* freed block at start or end of arena */

if (bp + bp->size == p->ptr) { /* join to upper nbr */

} else
5
if (p + p->size == bp) { /* join to lower nbr */
5
5
} else
5
freep = p;

