EE209 Fall 2022 Final

Section:
Student id:
Name:
1: __ /10
2: /12
3:__/12
4: _ /16
5: /14
6:__ /22
7: __/14
Total: ___/100

Please write CLEARLY
Unreadable solutions are assumed incorrect

1. Execeptions (10 points)

1.1 Please fill each blank with the appropriate exception classes (4 points)

Class Cause Async/Sync Return Behavior

@) Non-recoverable Sync Do not return
error

2) (Maybe) recoverable | Sync (Maybe) return to
error current instr

(3) Intentional Sync Return to next instr

4) Signal from 1/0 Async Return to next instr
device

1.2. Please write assembly code to call exit(1234) with a trap in 32bit x86. Never use

external system-level function (e.g., exit). Note that the system call number for exit is 1.

(6 points)

2. Memory management (12 points)
Answer the following questions assuming that the current page table is given as shown
below. Assume the size of page is 4KB. If you need any new page, assume that the

entry #4 in the page table will be swapped out to the disk address zz.

\% Physical or disk
address

0 0 XX

1 1 2

2 0 yy

3 0 null

4 1 1

2.1 movl 0x00001104, %eax (4 points)
(1) Will page fault occur?
(2) Will your program crash? If not, fill the page table after this instruction.

\% Physical or disk

address

2.2 movl 0x00002104, %eax (4 points)
(1) Will page fault occur?
(2) Will your program crash? If not, fill the page table after this instruction.

\Y Physical or disk

address

2.3 movl 0x00003104, %eax (4 points)
(1) Will page fault occur?
(2) Will your program crash? If not, fill the page table after this instruction.

\% Physical or disk

address

3. Process Management (12 points)

3.1. Here are codes for exe_a and exe_b. What happens if we execute "./exe_a" if
alphabet.txt contains "abcdefghijkimnopgrstuvwxyz”. Assume that unexpected errors will

not happen (e.g., read, fork, execvp will be all successful) (6 points)

// exe_a.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

#include <sys/wait.h>

int main() {
int fd = open("./alphabet.txt", O_RDONLY);
int status = 0;
char* argv[] = {NULL};

char buf[0x100] = {0};
read(fd, buf, 3);

printf("1: %s¥n", buf);
if (fork() {
execvp("./exe_b", argv);

}

wait(&status);
}

// exe_b.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#include <unistd.h>

int main(int argc, char** argv) {
char buf[0x100] = {0};
int fd = open("./alphabet.txt", O_RDONLY);

read(3, buf, 3);
printf("2: %s#n", buf);

read(fd, buf, 3);
printf("3: %s#n", buf);
}

3.2. How many ‘A’s would be printed out in this program? (4 points)

#include <unistd.h>

#include <stdio.h>

int main(int argc, char** argv) {
for(inti=0;i < 3;i++){
if (fork()) {
fprintf(stderr, "A");
}
else {
fprintf(stderr, "AA");
}
}
}

3.3. What is the output of this program if we run this program with "./test 1 2°? (2 points)

// test.c

#include <stdio.h>

int main(int argc, char** argv) {
printf("argc: %d¥n", argc);
}

argc:

4. Signals (16 points)

4.1 Please make a program that ticks every two seconds using alarm (4 points)

// alarm.c

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <signal.h>

#include <unistd.h>

static void myHandler(int iSig)

{
printf("Tick by alarm..#n");

/1 (1)

int main() {
signal(SIGALRM, myHandler);
/1 (2)

for(;)

1

4.2 Please make a program that ticks every two seconds using setitimer. Your answer can

be multiple statements. (6 points)

// signal.c

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <signal.h>
#include <unistd.h>

#include <sys/time.h>
static void myHandler(int iSig)

{
printf("Tick by interval timer..#n");

int main() {
struct itimerval sTimer;
signal(SIGPROF, myHandler);

/* Send the first signal in 2 second, 0 microseconds. */

(M

/* Send subsequent signals in 2 second, 0 microseconds intervals. */

()

setitimer(ITIMER_PROF, &sTimer, NULL);

for(;;)

!

4.3. When we execute both "/alarm’ and "./signal’, we found that one program ticks

slower than the other. (6 points)

(1) Which one is slower?

(2) Why?

5. Assembly 1 (14 points)
5.1 Below are the initial memory and register values. After the sequence of instructions

below, what are the values stored in memory addresses and registers in the table? (4 pts)

Memory Address | Value Register Value
0x278 Ox77 Y%rdi 0x10
0x270 0x116 %rsi 0x20
0x268 0x0 Yorcx 0x208
0x260 0x828 Yordx 0x200
0x258 0x51
0x250 Ox7
0x248 0x27
0x240 0x5
0x238 0x65
0x230 0x6
0x228 0x10
0x220 0x81
0x218 0x124
0x210 0x4
0x208 0x45
0x200 0x109

leaq (%rdx, %rsi, 2), %rcx
movq %rcx, 0x8(%rcx)

leag 0x10(%rcx, %rdi), %rdx
movq $0x25, 0x8(%rcx, %rsi)

Fill in the table with only memory addresses and registers with changed values.

Answer in hex.

Memory address or Register Value

5.2 Assume %rax==a, %rbx==b, %rcx==c.

(1) Using at most three calls to leag (and no other instructions), store (48*a) into %r8.

You may use other registers for temporary storage If needed. (2 points)

(2) Using at most three calls to leag (and no other instructions), store (3*b+9*c+13)

into %r8. You may use other registers for temporary storage If needed. (2 points)

5.3 Consider the C code below (left) where M and N are constants declared with #define.

Right is the corresponding X86-64 (long is 8 bytes). What is the value of M and N?

(6 points)
copy_element:
long mat1[M][N]; leaq (%rsi,%rsi,8),%rax
long mat2[N][M]; addq %rdi,%rax
movqg mat2(,%rax,8),%rcx
long copy_element(int i, int) leag (%rdi,%rdi,2),%rdx
{ leaq (%rdx,%rdx,1),%rax
mat1[i][j] = mat2[jI[i]; addq %rsi,%rax
} movqg %rcx,mat1(,%rax,8)
retq

6. Assembly 2 (22 points)

6.1 After the following is run, indicate the condition flags that are set. If no flags are set,

write none. Set means equal to 1. (2 points each)

M

movg $0, %rax
movqg $7, %rbx

cmpqg %rbx, %rax

)
movq $OxFFFFFfffffffftf, %rbx

movg $0x8000000000000001, %rcx
addg %rbx, %rcx
leag 1(%rbx), %rcx

6.2 Consider the silly read function in C and X86-64.

void read() read:

{ subgq $0x8, %rsp
char buf(3]; movq %rsp, %rdi
gets(buf); callg gets

% addg $0x8, %rsp

retq

(1) Would the program crash if the input is: abcdefgh<enter>? If the answer is yes, also

explain why. (2 points)

(2) Consider the input: 01234567890123456789<enter>. Assuming read() was called by
read_caller(), fill in the last 8 bytes of read_caller()'s stack frame. Each box should hold

one byte represented in hex. (4 points)

(NOTE: the ASCII code for the character ‘0’ is 0x30)

read_caller()

Fill in this part

<

Address increasing direction

6.3 Using the assembly code on the left, complete the C code on the right (4points each)

(M

f1:
cmpq %rsi, %rdi
jle L2
addq %rsi, %rdi

jmp L3
L2:

addq %rdi, %rsi
L3:

leaq (%rsi,%rdi), %rax

retq

int f1 (int x, int y) {

fe:
cmpg %rsi, %rdi
jle L6
L9:
addg $1, %rsi
cmpg %rsi, %rdi
j9 L9
L6:
leaq (%rsi,%rdi), %rax

retq

int f2 (int x, int y) {

6.4 Quickies. Assume X86-64.
(1) If we changed the function-calling convention to treat every single register as
CALLEE-SAVE, and recompiled all our code in that fashion, the code would still run the

same. True or false? (2 points)

(2) MOV can move bits from memory to memory in a single call. True or false? (2 points)

7. Assembler and Stack (14 points)

7.1 Consider the following assembly language program.

.section ".rodata”

msg1:
.asciz "Enter Character#n”
msg2:
.asciz "This is not X#n"
.section “.text”
.globl main
main:
pushl %ebp
movl %esp, %ebp
pushl $msg1
call printf
addl $4, %esp
call getchar
cmpl $'X, %eax
je finish
pushl $msg2
call printf
addl $4, %esp
finish:

movl $0, %eax
movl %ebp, %esp
popl %ebp

ret

(1) Assembler performs 2 passes over the assembly language program. Briefly describe

two passes. A single sentence is sufficient for each pass. (2 points)

(2) Fill in the symbol table and the relocation record after the Assembler performs 2
passes. Assume the length of every instruction is 4-byte. Write 2" if the Assembler cannot

resolve. (8 points)

Symbol Table

Label Section Offset Local? Seq#

Relocation Records

Section Offset Seq#

9

13

21

33

37

7.2 Quickies.

(1) Calling a function without any local variable does not grow the stack size. True or

false? (2 points)

(2) There is no .stack section in an ELF file. Why is this so? (2 points)

