
1

Fall term 2012

KAIST EE209 Programming Structures for EE

Final exam

Thursday Dec 20, 2012

Student's name:

Student ID:

The exam is closed book and notes. Read the questions carefully and focus your answers on

what has been asked. You are allowed to ask the instructor/TAs for help only in understanding

the questions, in case you find them not completely clear. Be concise and precise in your

answers and state clearly any assumption you may have made. All your answers must be

included in the attached sheets. You have 120 minutes to complete your exam. Be wise in

managing your time.

Scores

Question 1 __________/10___

Question 2 __________/20___

Question 3 __________/15___

Question 4 __________/10___

Question 5 __________/10___

Question 6 __________/15___

Total __________/80___

2

1. Briefly explain following terms or answer the question (10 pt)

(a) Virtual memory (2pt)

(b) Page table (2pt)

(c) External fragmentation (2pt)

(d) Trap (2pt)

(e) What is the difference between read(int fd, void* buf, size_t count) (system call) and

fread(void* ptr, size_t size, size_t nmemb, FILE *stream) (C library function)? (2 pt)

3

2. Fun programming (20 pt)

a) Assume a[99] has 99 distinct natural numbers from 1 to 100. Fill out the following

function that finds the missing number out of 1 to 100 that does not exist in a[99]. Be

concise and be cautious about memory use (including the stack usage) (5pt)

int find_missing(int a[99])

{

}

b) The function stack grows from high to low address in the Intel architecture. Assume

the stack could grow low to high or high to low address in general. Write a function

that returns 1 if the stack grows from high to low address, 0 if it grows from low to

high address. You can add another function if you want. (5pt)

int does_stack_grow_to_low_address(void)

{

}

4

c) What does this function do? (5pt)
typedef struct node {

 void *data;

 struct node *next;

} Node;

int f(Node *p)

{

Node *p1, *p2;

if (p == NULL) return 0;

p1 = p2 = p;

do {

 p1 = p1->next;

 p2 = p2->next;

 if (p2 == NULL)

 return 0;

 p2 = p2->next;

} while (p1 != NULL && p2 != NULL && p1 != p2);

 return 1;

}

d) What’s the output of the second printf() (printf(“parent ..”))? If it’s called multiple

times, show every possible output (5pt).

int g = 1;

int main(void)

{

 int k = 1;

if (fork() == 0) {

 k++; g++;

 printf(“child k+g=%d\n”, k+g);

}

g--;

k += 2;

wait(NULL);

printf(“parent k+g=%d\n”, k+g);

return 0;

}

5

3. The following assembly code was generated by gcc209 by compiling a simple C function

(named f). It takes one signed integer parameter and returns a signed integer value. You

may assume the passed-in parameter is in the range of 1 to 40. (15pt)

file "f.c"

 .text

 .globl f

 .type f, @function

f:

 pushl %ebp

 movl %esp, %ebp

 pushl %ebx

 subl $20, %esp

 cmpl $1, 8(%ebp)

 jg .L2

 movl $1, %eax

 jmp .L3

.L2:

 movl 8(%ebp), %eax

 decl %eax

 movl %eax, (%esp)

 call f

 movl %eax, %ebx

 movl 8(%ebp), %eax

 subl $2, %eax

 movl %eax, (%esp)

 call f

 addl %ebx, %eax

.L3:

 addl $20, %esp

 popl %ebx

 popl %ebp

 ret

(a) At label .L2, what do 4(%ebp) and 8(%ebp) have? (4pt, 2pt each)

6

(b) What’s the value of f(5)? (4pt)

(c) Write the equivalent code in C. (5pt)

(d) It looks that the assembly code is inefficient in stack memory usage. How would you

change the code to reduce the unnecessary stack memory usage? (2pt)

7

4. Memory management (10 pt)

a) List three kinds of cache misses and explain each of them. (3pt)

b) What is the “first fit” memory allocation strategy? Discuss the advantages and

disadvantages of “first fit”? (3pt)

8

c) Write a program that shows the minimum memory allocable chunk unit including the

header/footer overhead. (4pt)

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

return 0;

}

9

5. Exceptions and Process control (10pt)

(a) What is the difference between function calls and exceptions. List at least three. (3pt)

(b) Process context refers to the state that each process maintains. What does the context

consist of? List at least three. (3pt)

d) Explain each of the following system call functions in one sentence (4pt)

A. fork()

B. exec()

C. wait()

D. kill()

10

6. Big integer operations (15pt)

We are writing a library that can add and multiply two unsigned large integer values that

cannot be represented by the C’s built-in integer type (unsigned int, unsigned long,

unsigned long long). Assume that the largest integer in the library can be represented by

32 * sizeof(unsigned int) bytes. u_int is typedef’ed to be unsigned int.

For example, 0x11111111222222223333333344444444 can be represented by an integer

array of size 4. That is

u_int a[16] = {0};

a[0] = 0x44444444

a[1] = 0x33333333

a[2] = 0x22222222

a[3] = 0x11111111

represents 0x11111111222222223333333344444444. a[3] represents the most significant

four bytes whereas a[0] represents the least significant four bytes.

a) add_large() takes two unsigned big integers (a[16], b[16]) and write the sum to c[17].

Please fill out the function. (5pt)

void add_large(u_int a[16], u_int b[16], u_int c[17])

{

}

11

b) multiply_large() takes two unsigned big integers (a[16], b[16]) and writes the result of

the multiplication of the values into c[32]. Please fill out the function. (10pt)

void multiply_large(u_int a[16], u_int b[16], u_int c[32])

{

}

